A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics
Abstract
:1. Introduction
2. Principles and Methods
2.1. Principles
2.2. Methods
3. Results
3.1. Dielectric Layer Thickness
3.2. Doping Concentration
3.3. Modulator Geometric Factors
4. Discussion
Gate Material | Oxide | VπL (V·cm) | Loss (dB/cm) | α· VπL (dB·V) | Result Type |
---|---|---|---|---|---|
ITO [23] | Al2O3 | 0.052 | >1500 | >80 | Experimental |
ITO [24] | Al2O3 | 0.095 | 16,000 | 152 | Experimental |
InGaAsP [25] | Al2O3 | 0.047 | 4.6 | <1 | Experimental |
InP [26] | SiO2/Al2O3 | 0.54 | 2.3 | 1.24 | Experimental |
Poly-Si [7] | SiO2 | 1.8 | >30 | >48 | Experimental |
Poly-Si [29] | SiO2 | 0.886 | >18 | >16 | Numerical |
Poly-Si [9] | SiO2 | 0.2 | 65 | 13 | Experimental |
(This work) Poly-si | ZrO2 | 0.16 | 50 | 8.24 | Numerical |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, W.; Cao, L.; Shi, Y.; Wan, L.; Zhang, H.; Li, S.; Chen, G.; Li, Y.; Li, S.; Wang, Y. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 2023, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Segev, M. Highlighting photonics: Looking into the next decade. ELight 2021, 1, 2. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, J.; Cheng, J.; Dong, W.; Huang, C.; Shen, Y.; Zhang, Q.; Gu, M.; Qian, C.; Chen, H. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Mitomi, O.; Kawano, K.; Yanagibashi, M. Highly efficient 40-GHz bandwidth Ti: LiNbO/sub 3/optical modulator employing ridge structure. IEEE Photonics Technol. Lett. 1993, 5, 52–54. [Google Scholar] [CrossRef]
- Amin, R.; Maiti, R.; George, J.K.; Ma, X.; Ma, Z.; Dalir, H.; Miscuglio, M.; Sorger, V.J. A lateral MOS-capacitor-enabled ITO Mach–Zehnder modulator for beam steering. J. Light. Technol. 2020, 38, 282–290. [Google Scholar] [CrossRef]
- Zangeneh Kamali, K.; Xu, L.; Gagrani, N.; Tan, H.H.; Jagadish, C.; Miroshnichenko, A.; Neshev, D.; Rahmani, M. Electrically programmable solid-state metasurfaces via flash localised heating. Light Sci. Appl. 2023, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Debnath, K.; Chen, B.; Li, K.; Liu, S.; Ebert, M.; Reynolds, J.D.; Khokhar, A.Z.; Littlejohns, C.; Byers, J. High bandwidth capacitance efficient silicon MOS modulator. J. Light. Technol. 2021, 39, 201–207. [Google Scholar] [CrossRef]
- Hanim, A.; Mardiana, B.; Hazura, H.; Saari, S. On the modulation phase efficiency of a silicon pin diode optical modulator. In Proceedings of the International Conference On Photonics 2010, Langkawi, Malaysia, 5–7 July 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Webster, M.; Gothoskar, P.; Patel, V.; Piede, D.; Anderson, S.; Tummidi, R.; Adams, D.; Appel, C.; Metz, P.; Sunder, S. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 1–2. [Google Scholar]
- Yang, Y.; Fang, Q.; Yu, M.; Tu, X.; Rusli, R.; Lo, G.-Q. High-efficiency Si optical modulator using Cu travelling-wave electrode. Optics Express 2014, 22, 29978–29985. [Google Scholar] [CrossRef]
- Fujikata, J.; Ushida, J.; Ming-Bin, Y.; ShiYang, Z.; Liang, D.; Guo-Qiang, P.L.; Kwong, D.-L.; Nakamura, T. 25 GHz operation of silicon optical modulator with projection MOS structure. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010. p. OMI3. [Google Scholar]
- Liu, A.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 2004, 427, 615–618. [Google Scholar] [CrossRef]
- Debnath, K.; Thomson, D.J.; Zhang, W.; Khokhar, A.Z.; Littlejohns, C.; Byers, J.; Mastronardi, L.; Husain, M.K.; Ibukuro, K.; Gardes, F.Y. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res. 2018, 6, 373–379. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wu, J.; Sun, J. Structure and dielectric property of high-k ZrO2 films grown by atomic layer deposition using tetrakis (dimethylamido) zirconium and ozone. Nanoscale Res. Lett. 2019, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, X.; Xu, G.; Li, H.; He, S.; Hu, X.; Su, X.; Bai, W.; Lu, D.; Long, S. The Effects of Postdeposition Anneal and Postmetallization Anneal on Electrical Properties of TiN/ZrO2/TiN Capacitors. IEEE Trans. Electron Devices 2022, 70, 59–64. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Adewuyi, Y.G. Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters. Microporous Mesoporous Mater. 2012, 148, 88–100. [Google Scholar] [CrossRef]
- Robertson, J.; Wallace, R.M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 2015, 88, 1–41. [Google Scholar] [CrossRef]
- Manipatruni, S.; Xu, Q.; Schmidt, B.; Shakya, J.; Lipson, M. High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator. In Proceedings of the LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, Lake Buena Vista, FL, USA, 21–25 October 2007; pp. 537–538. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, C.; Li, H.; Ling, W.; Li, L.; Pang, A.; Sheng, Z.; Wu, A.; Wang, X.; Zou, S. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Light. Technol. 2013, 31, 4119–4125. [Google Scholar] [CrossRef]
- Félix Rosa, M.; Rathgeber, L.; Elster, R.; Hoppe, N.; Föhn, T.; Schmidt, M.; Vogel, W.; Berroth, M. Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology. Adv. Radio Sci. 2017, 15, 269–281. [Google Scholar] [CrossRef]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef]
- Amin, R.; Maiti, R.; Carfano, C.; Ma, Z.; Tahersima, M.H.; Lilach, Y.; Ratnayake, D.; Dalir, H.; Sorger, V.J. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 2018, 3, 126104. [Google Scholar] [CrossRef]
- Amin, R.; Maiti, R.; Gui, Y.; Suer, C.; Miscuglio, M.; Heidari, E.; Chen, R.T.; Dalir, H.; Sorger, V.J. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica 2020, 7, 333–335. [Google Scholar] [CrossRef]
- Han, J.-H.; Boeuf, F.; Fujikata, J.; Takahashi, S.; Takagi, S.; Takenaka, M. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics 2017, 11, 486–490. [Google Scholar] [CrossRef]
- Ohno, S.; Li, Q.; Sekine, N.; Fujikata, J.; Noguchi, M.; Takahashi, S.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Taperless Si hybrid optical phase shifter based on a metal-oxide-semiconductor capacitor using an ultrathin InP membrane. Optics Express 2020, 28, 35663–35673. [Google Scholar] [CrossRef] [PubMed]
- Kononchuk, O.; Nguyen, B.-Y. Silicon-on-Insulator (Soi) Technology: Manufacture and Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Witzens, J. High-speed silicon photonics modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Passaro, V.M.; Dell’Olio, F. Scaling and optimization of MOS optical modulators in nanometer SOI waveguides. IEEE Trans. Nanotechnol. 2008, 7, 401–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Li, Z.; Qiu, C.; Chen, Y.; Xu, Y.; Zhang, X.; Qiao, Y.; Wang, Y.; Liang, L.; Lei, Y.; et al. A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics. Nanomaterials 2023, 13, 3157. https://doi.org/10.3390/nano13243157
Zhou Z, Li Z, Qiu C, Chen Y, Xu Y, Zhang X, Qiao Y, Wang Y, Liang L, Lei Y, et al. A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics. Nanomaterials. 2023; 13(24):3157. https://doi.org/10.3390/nano13243157
Chicago/Turabian StyleZhou, Zhipeng, Zean Li, Cheng Qiu, Yongyi Chen, Yingshuai Xu, Xunyu Zhang, Yiman Qiao, Yubing Wang, Lei Liang, Yuxin Lei, and et al. 2023. "A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics" Nanomaterials 13, no. 24: 3157. https://doi.org/10.3390/nano13243157
APA StyleZhou, Z., Li, Z., Qiu, C., Chen, Y., Xu, Y., Zhang, X., Qiao, Y., Wang, Y., Liang, L., Lei, Y., Song, Y., Jia, P., Zeng, Y., Qin, L., Ning, Y., & Wang, L. (2023). A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics. Nanomaterials, 13(24), 3157. https://doi.org/10.3390/nano13243157