Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators
Abstract
:1. Introduction
2. Power Density-Improving Techniques
3. Piezoelectric Nanogenerator Composite Structure and Power Output
3.1. (1-3 Composites) Vertically Aligned PVDF/PVDF-TrFE Nanowires and Nanotubes
Material | Poled | V (V) | I (μA) | Resistor (MΩ) | Power Density (μW/cm2) | Xc | % β-Phase | d33 (pC/N) | εr | d332/(εrε0) or d33g33 (m2/N × 10−12) | Power Density /(Force × Hz) µW/ (cm2∙N∙Hz) | Loading | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[78] | PVDF-TrFE NTs (OD Ø 350 nm ID Ø 230 nm) | ✓ | - | - | - | - | - | - | −35 −17.8 | 7.7 13.2 | 18 2.72 | - | - |
[81] | PVDF-TrFE NTs (OD Ø 200 nm ID Ø 40–60 nm) | ✓ | 4.8 | - | 0.576 | 2.2 | - | - | 40–44 18–24 | - | - | 0.37 | 0.075 MPa 1 Hz |
[82] | PVDF-TrFE (Ø 19 nm l = 169 nm) | ✓ | - | - | - | - | - | - | 210/ 72.7/ 14.0 | - | - | - | - |
[76] | PVDF-TrFE (Ø ~400 nm l = ~10 µm) | ✓ | 1.1 | - | - | - | 57.7 50.8 | 48.2 38.2 | - | - | - | - | 2.5 N 2 Hz |
[83] | PVDF-TrFE NWs (Ø 60 nm) | X | - | - | - | - | - | - | 25–45 16–23 | - | - | - | - |
[80] | PVDF-TrFE Microwire (Ø ~ 8 µm l = ~50 μm) | ✓ | 4 @10 MOhms | 2.6 @ 50 kPa | 2.3 | 5 | - | - | - | - | - | 0.16 | 30 N 1 Hz |
[84] | PVDF-TrFE Microwire (Ø 80 μm l = 120 μm) MWBNNTs Ø 4.3–9.3 nm | ✓ | 22 | - | 6 | 11.3 | - | - | 14 ~3.5 | - | - | 0.14 | Compression 40 N (0.4 MPa) 2 Hz |
[85] | PVDF-TrFE (Ø 22 μm l = 50 μm) BaTiO3 NP Ø 200 nm | ✓ | 13.2 OC | 0.33 SC | 3.8 | 12.7 | - | - | 35.3 14.6 | 24 12 | 5.89 2.01 | 0.25 | Compression 50 N (0.5 MPa) 1 Hz |
3.2. (3-1 Composites) Piezoelectric Vertically Aligned Nanorods Encapsulated in PVDF
Material | Poled | V (V) | I (μA) | Resistor (MΩ) | Power Density (μW/cm2) | % β-Phase | d33 (pC/N) | εr | d332/(εrε0) or d33g33 (m2/N × 10−12) | Power Density /(Force × Hz) µW/(cm2∙N∙Hz) | Loading | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[86] | PVDF-ZnO (Ø ~ 200 nm) | X | 46.64 | 1.392 SC | 15 | 45.87 1800× | 94.4% of total crystallinity 53 | - | - | - | 3.7 | Finger Tapping ~12–14 kPa 3 Hz |
[87] | PVDF-ZnO (Ø hundreds of nm) | ✓ | ~0.7 OC ~0.3 OC | ~0.05 SC ~0.01 SC | - | - | - | - | ~2.4 ~1.3 | - | - | Bending 3.2% strain |
[88] | PVDF- ZnO (Ø ~ 30 nm) | X | - | - | - | - | - | 14.91 ± 4.39 5.35 ± 1.42 | - | - | - | - |
[89] | PVDF (Ø 160 nm)-ZnO (l = 1.5 µm Ø 120 nm) | X | 0.356 OC ~0.216 | 0.456 SC 0.212 | - | - | 90% of total crystallinity | - | - | - | - | Compression 4 N 6 Hz |
[90] | PVDF-ZnO (Ø 200 nm l = 3 µm) | X | 2.73 | 152.2 | 0.018 | 103.9 | - | - | - | - | - | Compression 125 Pa |
3.3. (3-0 Composites) PVDF/PVDF-TrFE Composites with Non-Vertically Aligned Nanoparticles
- Conductive NPs
- Non-conductive NPs
- Piezoelectric NPs
- Hollow pores (pores are created in the PVDF/PVDF-TrFE film)
Material | Poled | V (V) | I (μA) | Resistor (MΩ) | Power Density (μW/cm2) | Xc | % β-Phase | d33 (pC/N) | εr | d332/εrε0 or d33g33 (m2/N × 10−12) | Power Density /(Force × Hz) µW/(cm2∙N∙Hz) | Loading | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[92] | PVDF- rGO Ag | X | 18 OC 0.1 OC ×180 | 1.05 SC 0.03 SC ×35 | 1 | 0.36 | 46 9 | β ~17% γ~14% | - | - | - | 0.012 | Hand Tapping 4.6 kPa ~5 Hz |
[70] | PVDF/ Bi2Al4O9 (l = 100 nm) rGO | X | 5.92 OC 1.34 ×4.41 | 0.76 SC 0.22 ×3.45 | 12 | 0.457 | - | - | - | - | - | 3.5 | Finger tapping 10–12 kPa ~2 Hz |
[68] | Porous PVDF (Pore Ø 60 nm) | ✓ | 84.5 OC 10.5 ×8 | 22 SC 2 ×11 | 7 | 12 | - | - | - | - | - | 0.18 | 2 kPa 30 Hz |
[95] | PVDF- ZnO NR Ø ~ 50–150 nm | X | 24.5 OC 4.8 ×5.1 | 1.7 SC 0.41 ×4.1 | - | - | 64.1 ~30 | 53.84 | 50.4 ~22.3 | ~22 ~8 | 13 ~7.0 | - | Finger motion 28 N 5 Hz |
[96] | PVDF-ZnO NR | X | 1.81 OC ~0.3 ×6 | 0.56 SC ~0.34 ×1.6 | 7 | 0.21 | 55.36 28.98 | 42 | −1.17 | - | - | 3.4 × 10−6 | ~15 kPa ~2 Hz |
[97] | PVDF- VB2 | X | 61.5 OC 2.3 ×26.7 | 12.2 SC 0.3 ×40.6 | 8 | 300.5 | ~53 39 | β~51% γ~2% | −50.3 −40.7 | ~53 ~9 | 5.41 20.8 | 1.3 | ~80 N ~3 Hz strain rate 0.797% s−1 500 kPa |
[98] | PVDF-CaTiO3 | ✓ | 20 ×4 | 0.25 ×2 | 100 | 0.19 | - | - | - 1540 | ~18 | - | 0.24 | ~5 N ~0.16 Hz |
[91] | PVDF-TiO2 NP <100 nm | X | 5.45 OC 2.08 ×2.6 | - | - | - | 38.22 26.78 | 34.01 | - | 23.06 @ 1 × 106 Hz | - | - | Finger tapping ~4 Hz |
[99] | PVDF-BaTiO3 (~460 nm) | ✓ | 7.2 | 0.038 | 100 | 0.8 | - | - | - | 47 ~23 | - | - | 10 m/s2 1.68 Hz |
[79] | PVDF-EDABCO-CuCl4 (50–150 nm) | X | 63 OC ×2 | 2.1 SC ×3 | 8 | 43.7 | - | - | - | 5.3 | - | 0.58 | Compression 50 kPa 15 N 5 Hz |
3.4. Electrospun Fibers
Material | V (V) | I (μA) | Resistor (MΩ) | Power Density (μW/cm2) | Xc | % β-Phase | d33 (pC/N) | εr | d332/(εrε0) or d33g33 (m2/N × 10−12) | Power Density /(Force × Hz) µW/(cm2∙N∙Hz) | Loading | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[69] | PVDF TrFE (BaTiO3 NPs l = 2.6–3.9 µm Ø 150–300 nm) | 12.6 OC | 1.3 SC | 7.2 | 4.25 ×7.6 | - | 94.4% of total crystallinity | - | - | - | - | Bending 2 Hz frequency 4 mm displacement |
[102] | PVDF (~Ø 0.6 µm) (BaTiO3 NPs Ø 200 nm and Graphene NSs) | ~5.5 | ~0.8 | 6.9 | 0.65 | - | 91.1% of total crystallinity | - | - | - | - | Bending (slider) 2Hz frequency 4 mm displacement |
[107] | PVDF (Ø 0.37 µm) with BiCl3 and ZnO NPs Ø ~ 30 nm | 12 OC ~3 | ~0.08 SC ~0.02 | 1000 | 0.64 | 75.54 38.76 | 69 15 | 3.8 1.74 | - | - | - | 0.5 Hz translation stage 6mm tensions |
[108] | PVDF (Ø 163 nm)-KNN CNTs | 12 | 18 | 0.220 | 54 | - | 82.5% of total crystallinity | - | - | - | 2.25 | Compressive 1 kPa 60 Hz |
[109] | PVDF Ø 0.1~0.25 μm (reduced graphene oxide) | ~8.5 | - | 10 | 3.7 | - | 87% of total crystallinity ~82% | - | - | - | - | Finger pressing 2 Hz |
[110] | Ce3+ doped PVDF Ø ~ 80 nm graphene NSs | ~5 | ~0.003 Per cm2 | 1 | 0.56 | 56 53 | 46% ~42% | - | - | - | 0.0175 | Compression 8 N 6.6 kPa 4 Hz |
[67] | PVDF (average Ø 600–700 nm)-MWCNTs | 6 OC 2 OC | - | - | - | 38.1 47 | 26 0 | - | - | - | - | Bending 3 cm displacement 0.8 Hz |
[111] | PVDF (Ø 330 ± 30 nm)- Cloisite 30B | ~15 | ~16 | 1 | 68.0 23.2 | - | 79% of total crystallinity ~66% | - | - | - | - | Finger Tapping |
[66] | PVDF | 0.32 | - | 594 | 2.2 | - | - | 41.38–18.2 | - | - | 0.00049 | Compression 35 Hz ~128 N |
[112] | PVDF/PAN Ø 100–300 nm | 1.3 OC | 0.07 SC | - | - | - | 83.4% of total crystallinity | - | - | - | - | Compression 1 N 2 Hz |
[113] | PVDF (Ø 219.4 nm)-ZnO (Ø 90–140 nm)~300 nm long | 1.12 | 1.6 | 0.7 | 0.2 | - | 73.2% of total crystallinity ~70.8% | - | - | - | 1.6 × 10−5 | 140 Hz 116 dB |
[114] | PVDF (Ø 120 ± 100 nm)-ZnO (l = ~183 ± 153 nm Ø 30 ± 9 nm) | 8.3 | 0.139 | 60 | 0.077 | - | 80.2% of total crystallinity ~83.8% | - | - | - | 0.00051 | 0.1 MPa 1 Hz |
[115] | PVDF (1.28 µm)-ZnO NR (Ø 70 nm l = 850 nm) | 85 OC | 2.2 SC | - | - | 53.1 ~46% | 48.1 ~39.6% | - | - | - | - | Bending 4 Hz |
[116] | PVDF-TrFE (Ø.98 µm) -ZnO NRs Ø 91 nm l = 793 nm | 61 OC | 2.2 SC | - | - | 63 ~44 | ~58 ~41 | - | - | - | - | Finger bending 4 Hz |
[117] | PVDF (Ø 178 nm)-Y-doped ZnO | 13 | 1.6 | 10 | 2 | - | 72% of total crystallinity 69 | - | - | - | 0.06 | 40 N 0.8 Hz |
[118] | PVDF (Ø 300 nm)/KNN /ZnO (Ø 79 nm) | 8.31 | 5 | 10 | 10.38 | 84 | 78.92 | - | - | - | 0.43 | Sewing machine 1 kPa 60 Hz |
[119] | PVDF-HFP—Co-doped ZnO | 2.8 OC ~0.120 | - | - | - | 35 21 | 19.11 7.87 | - | 38 8 | - | - | Tapping force 2.5 N 50 Hz |
4. Discussion and Conclusions
5. Future Directions
- The use of multiple techniques described in Section 2 to increase the power output of PVDF/PVDF-TrFE PENGs.
- A study of the long-term durability and biocompatibility of PVDF/PVDF-TrFE PENGs is needed before these PENGS can be commercially used.
Author Contributions
Funding
Conflicts of Interest
References
- Liu, W.-D.; Yin, L.-C.; Li, L.; Yang, Q.; Wang, D.-Z.; Li, M.; Shi, X.-L.; Liu, Q.; Bai, Y.; Gentle, I. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes. Energy Environ. Sci. 2023, 16, 5123–5135. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Hu, D.; Yao, M.; Fan, Y.; Ma, C.; Fan, M.; Liu, M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 2019, 55, 288–304. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, J.; Dunn, S. Piezoelectric nanogenerators–a review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.K.; Dutta, J.; Brahma, S.; Rao, B.; Liu, C.-P. Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezopotential and screening effect. J. Phys. Mater. 2021, 4, 044011. [Google Scholar] [CrossRef]
- Xu, S.; Wei, Y.; Liu, J.; Yang, R.; Wang, Z.L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032. [Google Scholar] [CrossRef]
- Fujii, I.; Nakashima, K.; Kumada, N.; Wada, S. Structural, dielectric, and piezoelectric properties of BaTiO3–Bi (Ni1/2Ti1/2) O3 ceramics. J. Ceram. Soc. Jpn. 2012, 120, 30–34. [Google Scholar] [CrossRef]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Le, A.T.; Ahmadipour, M.; Pung, S.-Y. A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J. Alloys Compd. 2020, 844, 156172. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, B. A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J. Alloys Compd. 2020, 816, 152491. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Yu, X.; Zi, Y. Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2020, 2, 318–340. [Google Scholar] [CrossRef]
- Lovinger, A.J. Ferroelectric polymers. Science 1983, 220, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Ohigashi, H.; Itoh, T.; Kimura, K.; Nakanishi, T.; Suzuki, M. Analysis of frequency response characteristics of polymer ultrasonic transducers. Jpn. J. Appl. Phys. 1988, 27, 354. [Google Scholar] [CrossRef]
- Murayama, N.; Nakamura, K.; Obara, H.; Segawa, M. The strong piezoelectricity in polyvinylidene fluroide (PVDF). Ultrasonics 1976, 14, 15–24. [Google Scholar] [CrossRef]
- Kawai, H. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 1969, 8, 975. [Google Scholar] [CrossRef]
- Marutake, M. The days when piezoelectric PVDF was discovered. Ferroelectrics 1995, 171, 5–6. [Google Scholar] [CrossRef]
- Arkema. Performance Characteristics & Data of Kynar® PVDF; Arkema: Colombes, France, 2023. [Google Scholar]
- Arkema. KYNAR (PVDF) Chemical Compatibility & Chemical Resistance Chart; Arkema: Colombes, France, 2015. [Google Scholar]
- Arkema. High Performance Polymers Medical Grades and Technical Data Sheets; Arkema: Colombes, France, 2022. [Google Scholar]
- Lovinger, A.J. Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 1982, 15, 40–44. [Google Scholar] [CrossRef]
- Bera, B.; Sarkar, M.D. Piezoelectricity in PVDF and PVDF based piezoelectric nanogenerator: A concept. IOSR J. Appl. Phys 2017, 9, 95–99. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Glushenkov, A.M.; Lussini, V.C.; Fox, P.J.; Dicinoski, G.W.; Shapter, J.G.; Ellis, A.V. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 2019, 12, 1143–1176. [Google Scholar] [CrossRef]
- Alam, M.M.; Crispin, X. The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators. Nano Res. Energy 2023, 2, e9120076. [Google Scholar] [CrossRef]
- PyzoFlex. Properties of PVDF and Its copolymers. Available online: https://www.pyzoflex.com/fileadmin/ProduktWebseiten/pyzoflex/06-PVDF-and-its-Copolymers.pdf (accessed on 11 September 2023).
- Furukawa, T.; Date, M.; Fukada, E.; Tajitsu, Y.; Chiba, A. Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Jpn. J. Appl. Phys. 1980, 19, L109. [Google Scholar] [CrossRef]
- Yagi, T.; Tatemoto, M.; Sako, J.-I. Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers. Polym. J. 1980, 12, 209–223. [Google Scholar] [CrossRef]
- Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. A Multinatl. J. 1989, 18, 143–211. [Google Scholar] [CrossRef]
- Fujisaki, Y. Poly (vinylidenefluoride-trifluoroethylene) P (VDF-TrFE)/semiconductor structure ferroelectric-gate FETs. In Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 157–183. [Google Scholar]
- Jaffe, B.; Cook, W.; Jaffe, H. Ceramics Piezoelectric; Elsevier: Amsterdam, The Netherlands, 1971. [Google Scholar]
- APC International Ltd. Piezoelectric Constants. Available online: https://www.americanpiezo.com/knowledge-center/piezo-theory/piezoelectric-constants.html (accessed on 20 September 2023).
- Kulkarni, V.; Ben-Mrad, R.; Prasad, S.E.; Nemana, S. A shear-mode energy harvesting device based on torsional stresses. IEEE/ASME Trans. Mechatron. 2013, 19, 801–807. [Google Scholar] [CrossRef]
- Ramadan, K.S.; Sameoto, D.; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 2014, 23, 033001. [Google Scholar] [CrossRef]
- Döring, J.; Bovtun, V.; Bartusch, J.; Beck, U.; Kreutzbruck, M. Cellular polypropylene ferroelectret film: Piezoelectric material for non-contact ultrasonic transducers. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 25–28. [Google Scholar]
- Crossley, S.; Whiter, R.; Kar-Narayan, S. Polymer-based nanopiezoelectric generators for energy harvesting applications. Mater. Sci. Technol. 2014, 30, 1613–1624. [Google Scholar] [CrossRef]
- Xie, L.; Wang, G.; Jiang, C.; Yu, F.; Zhao, X. Properties and applications of flexible poly (vinylidene fluoride)-based piezoelectric materials. Crystals 2021, 11, 644. [Google Scholar] [CrossRef]
- Acoustics, P. PVdF Film -Its Properties and Uses. Available online: https://www.acoustics.co.uk/wp-content/uploads/2022/04/Uses-and-properties-of-poled-PVDF-V1-0422.pdf (accessed on 11 September 2023).
- PolyK. PolyK Piezo PVDF Properties. Available online: https://piezopvdf.com/piezo-pvdf-film-kit/ (accessed on 22 August 2023).
- Connectivity, T. Metallized Piezo Film Sheets. Available online: https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMetallized_Piezo_Film_Sheets%7FA1%7Fpdf%7FEnglish%7FENG_DS_Metallized_Piezo_Film_Sheets_A1.pdf%7FCAT-PFS0003 (accessed on 22 August 2023).
- Xu, H. Dielectric properties and ferroelectric behavior of poly (vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films. J. Appl. Polym. Sci. 2001, 80, 2259–2266. [Google Scholar] [CrossRef]
- PolyK. PVDF-TrFE Copolymer. Available online: https://www.polyk-lab.com/PVDF-TrFE-Summary.pdf (accessed on 11 September 2023).
- PolyK. PVDF-TrFE Copolymer 75/25 Poled Piezoelectric Film, High d33. Available online: https://piezopvdf.com/pvdf-trfe-c25-piezo-film-100mm/ (accessed on 11 September 2023).
- Measurement Specialties, Inc. Piezo Film Sensors Technical Manual; Measurement Specialties, Inc.: Norristown, PA, USA, 1999. [Google Scholar]
- You, L.; Zhang, Y.; Zhou, S.; Chaturvedi, A.; Morris, S.A.; Liu, F.; Chang, L.; Ichinose, D.; Funakubo, H.; Hu, W. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 2019, 5, eaav3780. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Q. Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: Progress and prospects. Adv. Sci. 2020, 7, 1902468. [Google Scholar] [CrossRef]
- Katsouras, I.; Asadi, K.; Li, M.; Van Driel, T.B.; Kjaer, K.S.; Zhao, D.; Lenz, T.; Gu, Y.; Blom, P.W.; Damjanovic, D. The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride). Nat. Mater. 2016, 15, 78–84. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Paramonova, E.V.; Bdikin, I.K.; Bystrova, A.V.; Pullar, R.C.; Kholkin, A.L. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride)(PVDF). J. Mol. Model. 2013, 19, 3591–3602. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Zhu, Z.; Rui, G.; Du, B.; Chen, D.; Huang, Y.F.; Zhu, L. Recent Progress on Structure Manipulation of Poly (vinylidene fluoride)-Based Ferroelectric Polymers for Enhanced Piezoelectricity and Applications. Adv. Funct. Mater. 2023, 33, 2301302. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.; Li, J. PVDF energy-harvesting devices: Film preparation, electric poling, energy-harvesting efficiency. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; pp. 80–83. [Google Scholar]
- Das Gupta, D.; Doughty, K. Changes in X-ray diffraction patterns of polyvinylidene fluoride due to corona charging. Appl. Phys. Lett. 1977, 31, 585–587. [Google Scholar] [CrossRef]
- Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A.A.; Luo, J.; Shah, T.H.; Siores, E.; Thundat, T. Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 2015, 51, 8257–8260. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Yao, K.; Tay, F.E.H.; Kumar, A.; Zeng, K. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53, 1404–1408. [Google Scholar] [CrossRef]
- Rodriguez, B.J.; Jesse, S.; Kalinin, S.V.; Kim, J.; Ducharme, S.; Fridkin, V. Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Appl. Phys. Lett. 2007, 90, 122904. [Google Scholar] [CrossRef]
- Bystrov, V.; Bystrova, N.; Paramonova, E.; Vizdrik, G.; Sapronova, A.; Kuehn, M.; Kliem, H.; Kholkin, A. First principle calculations of molecular polarization switching in P (VDF–TrFE) ferroelectric thin Langmuir–Blodgett films. J. Phys. Condens. Matter 2007, 19, 456210. [Google Scholar] [CrossRef]
- Satapathy, S.; Pawar, S.; Gupta, P.; Varma, K. Effect of annealing on phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 2011, 34, 727–733. [Google Scholar] [CrossRef]
- Pan, H.; Na, B.; Lv, R.; Li, C.; Zhu, J.; Yu, Z. Polar phase formation in poly (vinylidene fluoride) induced by melt annealing. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1433–1437. [Google Scholar] [CrossRef]
- Silva, M.; Costa, C.M.; Sencadas, V.; Paleo, A.; Lanceros-Méndez, S. Degradation of the dielectric and piezoelectric response of β-poly (vinylidene fluoride) after temperature annealing. J. Polym. Res. 2011, 18, 1451–1457. [Google Scholar] [CrossRef]
- Meng, N.; Ren, X.; Santagiuliana, G.; Ventura, L.; Zhang, H.; Wu, J.; Yan, H.; Reece, M.J.; Bilotti, E. Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun. 2019, 10, 4535. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Meng, N.; Zhang, H.; Wu, J.; Abrahams, I.; Yan, H.; Bilotti, E.; Reece, M.J. Giant energy storage density in PVDF with internal stress engineered polar nanostructures. Nano Energy 2020, 72, 104662. [Google Scholar] [CrossRef]
- Farrar, D.; Ren, K.; Cheng, D.; Kim, S.; Moon, W.; Wilson, W.L.; West, J.E.; Yu, S.M. Permanent polarity and piezoelectricity of electrospun α-helical poly (α-amino acid) fibers. Adv. Mater. 2011, 23, 3954–3958. [Google Scholar] [CrossRef] [PubMed]
- Yee, W.A.; Kotaki, M.; Liu, Y.; Lu, X. Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer 2007, 48, 512–521. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Ren, G.; Zhang, P.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 2011, 20, 045009. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Yuan, X.; Li, X.; Zhang, Y.; Sheng, J. Preparation and properties of electrospun poly (vinylidene fluoride) membranes. J. Appl. Polym. Sci. 2005, 97, 466–474. [Google Scholar] [CrossRef]
- Shafii, C. Energy Harvesting Using PVDF Piezoelectric Nanofabric. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2014. [Google Scholar]
- Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 2013, 24, 405401. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.M.; Khan, A.A.; Huang, G.; Mei, N.; Saritas, R.; Wen, B.; Zhang, S.; Voss, P.; Abdel-Rahman, E.; Leonenko, Z. Porosity modulated high-performance piezoelectric nanogenerator based on organic/inorganic nanomaterials for self-powered structural health monitoring. ACS Appl. Mater. Interfaces 2020, 12, 47503–47512. [Google Scholar] [CrossRef]
- Shi, K.; Chai, B.; Zou, H.; Shen, P.; Sun, B.; Jiang, P.; Shi, Z.; Huang, X. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 2021, 80, 105515. [Google Scholar] [CrossRef]
- Anand, A.; Meena, D.; Bhatnagar, M. Synthesis and characterization of flexible PVDF/Bi2Al4O9/RGO based piezoelectric materials for nanogenerator application. J. Alloys Compd. 2020, 843, 156019. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Paramonova, E.V.; Dekhtyar, Y.; Pullar, R.C.; Katashev, A.; Polyaka, N.; Bystrova, A.V.; Sapronova, A.V.; Fridkin, V.M.; Kliem, H. Polarization of poly (vinylidene fluoride) and poly (vinylidene fluoride-trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition. J. Appl. Phys. 2012, 111, 104113. [Google Scholar] [CrossRef]
- Material, S. 1–3 Composites—Material of Choice for High End Ultrasound Transducer. Available online: https://www.smart-material.com/13CompOverviewV2.html (accessed on 19 September 2023).
- Meng, N.; Zhu, X.; Mao, R.; Reece, M.J.; Bilotti, E. Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J. Mater. Chem. C 2017, 5, 3296–3305. [Google Scholar] [CrossRef]
- Cauda, V.; Canavese, G.; Stassi, S. Nanostructured piezoelectric polymers. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Steinhart, M.; Wendorff, J.H.; Greiner, A.; Wehrspohn, R.B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296, 1997. [Google Scholar] [CrossRef]
- Chen, X.; Shao, J.; An, N.; Li, X.; Tian, H.; Xu, C.; Ding, Y. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J. Mater. Chem. C 2015, 3, 11806–11814. [Google Scholar] [CrossRef]
- Steinhart, M.; Göring, P.; Dernaika, H.; Prabhukaran, M.; Gösele, U.; Hempel, E.; Thurn-Albrecht, T. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys. Rev. Lett. 2006, 97, 027801. [Google Scholar] [CrossRef] [PubMed]
- Liew, W.H.; Mirshekarloo, M.S.; Chen, S.; Yao, K.; Tay, F.E.H. Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P (VDF-TrFE) nanotube array. Sci. Rep. 2015, 5, 09790. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Khan, A.A.; Teale, S.; Xu, J.; Parmar, D.H.; Zhao, R.; Grater, L.; Serles, P.; Zou, Y.; Filleter, T. Large piezoelectric response in a Jahn-Teller distorted molecular metal halide. Nat. Commun. 2023, 14, 1852. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tian, H.; Li, X.; Shao, J.; Ding, Y.; An, N.; Zhou, Y. A high performance P (VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 2015, 7, 11536–11544. [Google Scholar] [CrossRef] [PubMed]
- Bhavanasi, V.; Kusuma, D.Y.; Lee, P.S. Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF-TrFE nanotubes synthesized by nanoconfinement. Adv. Energy Mater. 2014, 4, 1400723. [Google Scholar] [CrossRef]
- Hong, C.-C.; Huang, S.-Y.; Shieh, J.; Chen, S.-H. Enhanced piezoelectricity of nanoimprinted sub-20 nm poly (vinylidene fluoride–trifluoroethylene) copolymer nanograss. Macromolecules 2012, 45, 1580–1586. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, Q.; Ding, G.; Tong, F.; Hu, Z.; Jonas, A.M. Confinement induced preferential orientation of crystals and enhancement of properties in ferroelectric polymer nanowires. ACS Macro Lett. 2013, 2, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Cheng, C.; Chen, X.; Chen, X.; Shao, J.; Zhang, J.; Hu, H.; Tian, H.; Li, X.; Ma, L. High-performance piezoelectric nanogenerator based on microstructured P (VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 2019, 60, 701–714. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Shao, J.; An, N.; Tian, H.; Wang, C.; Han, T.; Wang, L.; Lu, B. High-performance piezoelectric nanogenerators with imprinted P (VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245. [Google Scholar] [CrossRef]
- Anand, A.; Bhatnagar, M. Role of vertically aligned and randomly placed zinc oxide (ZnO) nanorods in PVDF matrix: Used for energy harvesting. Mater. Today Energy 2019, 13, 293–301. [Google Scholar] [CrossRef]
- Choi, M.; Murillo, G.; Hwang, S.; Kim, J.W.; Jung, J.H.; Chen, C.-Y.; Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy 2017, 33, 462–468. [Google Scholar] [CrossRef]
- Cavallini, D.; Fortunato, M.; De Bellis, G.; Sarto, M. PFM Characterization of Piezoelectric PVDF/ZnONanorod thin films. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–3. [Google Scholar]
- Fakhri, P.; Amini, B.; Bagherzadeh, R.; Kashfi, M.; Latifi, M.; Yavari, N.; Kani, S.A.; Kong, L. Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC Adv. 2019, 9, 10117–10123. [Google Scholar] [CrossRef]
- Nour, E.; Khan, A.; Nur, O.; Willander, M. A flexible sandwich nanogenerator for harvesting piezoelectric potential from single crystalline zinc oxide nanowires. Nanomater. Nanotechnol. 2014, 4, 24. [Google Scholar] [CrossRef]
- Kulkarni, N.D.; Kumari, P. Development of highly flexible PVDF-TiO2 nanocomposites for piezoelectric nanogenerator applications. Mater. Res. Bull. 2023, 157, 112039. [Google Scholar] [CrossRef]
- Pusty, M.; Sinha, L.; Shirage, P.M. A flexible self-poled piezoelectric nanogenerator based on a rGO–Ag/PVDF nanocomposite. New J. Chem. 2019, 43, 284–294. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Thakur, P.; Kool, A.; Hoque, N.A.; Bagchi, B.; Khatun, F.; Biswas, P.; Brahma, D.; Roy, S.; Banerjee, S.; Das, S. Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 2018, 44, 456–467. [Google Scholar] [CrossRef]
- Singh, H.H.; Singh, S.; Khare, N. Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 2018, 29, 143–150. [Google Scholar] [CrossRef]
- Karan, S.K.; Maiti, S.; Agrawal, A.K.; Das, A.K.; Maitra, A.; Paria, S.; Bera, A.; Bera, R.; Halder, L.; Mishra, A.K. Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density. Nano Energy 2019, 59, 169–183. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Jeong, H.; Panigrahi, B.K.; Pakawanit, P.; Dubal, D.; Hong, S.; Kim, H.J. Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting. Nano Energy 2022, 102, 107682. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.; Mistewicz, K.; Kim, H.J. Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics. Crystals 2021, 11, 85. [Google Scholar] [CrossRef]
- Mitchell, G.R. Electrospinning: Principles, Practice and Possibilities; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Ramakrishna, S. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005. [Google Scholar]
- Shi, K.; Sun, B.; Huang, X.; Jiang, P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018, 52, 153–162. [Google Scholar] [CrossRef]
- Park, K.I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G.T.; Zhu, G.; Kim, J.E.; Kim, S.O.; Kim, D.K.; Wang, Z.L. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 2012, 24, 2999–3004. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.F.; Costa, C.M.; Caparrós, C.; Sencadas, V.; Lanceros-Méndez, S. Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO3 nanocomposites. J. Mater. Sci. 2012, 47, 1378–1388. [Google Scholar] [CrossRef]
- Wu, Y.; Hsu, S.L.; Honeker, C.; Bravet, D.J.; Williams, D.S. The role of surface charge of nucleation agents on the crystallization behavior of poly (vinylidene fluoride). J. Phys. Chem. B 2012, 116, 7379–7388. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Yu, Y.; Zeng, Y.; Zhang, G.; Zhang, Q.; He, J. Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly (vinylidene fluoride) nanocomposites. J. Appl. Polym. Sci. 2012, 125, E314–E319. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Li, X.; Wang, H.; Sang, X.; Zhu, G.; Yeung, Y. Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. Eur. Polym. J. 2022, 166, 110956. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter 2020, 16, 4876–4886. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Li, Y.; Wang, Z.; Wang, W.; An, Q.; Tong, W. Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by in-situ reduction. Mater. Today Commun. 2021, 26, 101629. [Google Scholar] [CrossRef]
- Garain, S.; Jana, S.; Sinha, T.K.; Mandal, D. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces 2016, 8, 4532–4540. [Google Scholar] [CrossRef]
- Tiwari, S.; Gaur, A.; Kumar, C.; Maiti, P. Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 2019, 171, 485–492. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Qin, Q.; Mi, L.; Li, G.; Zheng, G.; Liu, C.; Li, Q.; Liu, X. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv. Compos. Hybrid Mater. 2021, 4, 1215–1225. [Google Scholar] [CrossRef]
- Sun, B.; Li, X.; Zhao, R.; Ji, H.; Qiu, J.; Zhang, N.; He, D.; Wang, C. Electrospun poly (vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator. J. Mater. Sci. 2019, 54, 2754–2762. [Google Scholar] [CrossRef]
- Kim, M.; Wu, Y.S.; Kan, E.C.; Fan, J. Breathable and flexible piezoelectric ZnO@ PVDF fibrous nanogenerator for wearable applications. Polymers 2018, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, S.; Liu, W.; Fu, R.; Tu, S.; Zhao, Y.; Dong, L.; Yan, B.; Gu, Y. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes. J. Phys. Chem. C 2019, 123, 11378–11387. [Google Scholar] [CrossRef]
- Ye, L.; Chen, L.; Yu, J.; Tu, S.; Yan, B.; Zhao, Y.; Bai, X.; Gu, Y.; Chen, S. High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P (VDF-TrFE) composite membranes for energy harvesting application. J. Mater. Sci. Mater. Electron. 2021, 32, 3966–3978. [Google Scholar] [CrossRef]
- Yi, J.; Song, Y.; Cao, Z.; Li, C.; Xiong, C. Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Compos. Sci. Technol. 2021, 215, 109011. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. Int. J. Energy Res. 2020, 44, 5545–5563. [Google Scholar] [CrossRef]
- Parangusan, H.; Ponnamma, D.; Al-Maadeed, M.A.A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754. [Google Scholar] [CrossRef]
- Lei, T.; Yu, L.; Zheng, G.; Wang, L.; Wu, D.; Sun, D. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 2015, 50, 4342–4347. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Kuang, X.; Tan, D.; Wang, X. Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC Adv. 2016, 6, 109061–109066. [Google Scholar] [CrossRef]
- Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef]
- Dutoit, N.E.; Wardle, B.L.; Kim, S.-G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 2005, 71, 121–160. [Google Scholar] [CrossRef]
- Priya, S.; Song, H.-C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.-G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J. A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvest. Syst. 2017, 4, 3–39. [Google Scholar] [CrossRef]
- Hamdia, K.M. A representative volume element model to evaluate the effective properties of flexoelectric nanocomposite. Eur. J. Mech.-A/Solids 2024, 103, 105149. [Google Scholar] [CrossRef]
- Kulkarni, V.; Mrad, B.; Prasad, E.; Nemana, S. A shear-mode piezoceramic device for energy harvesting applications. In Proceedings of the International Workshop Smart Materials, Structures and NDT in Aerospace Conference Canada, Montreal, QC, Canada, 2–4 November 2011; pp. 2–4. [Google Scholar]
Material | Values | Crystallinity | % β-Phase | d33 (pC/N) | εr | d332/(εrε0) or d33g33 (m2/N × 10−12) | Reference |
---|---|---|---|---|---|---|---|
PVDF (Bulk) | Generally Accepted Values | ~50–60% [15] | - | −13–(−35) | 8–15 | 17 | [25,35,36,37,38] |
Different Industrial Datasheets | - | - | −30 | 8–10 | 12 | [39] | |
- | >80% of total crystallinity | −23–(−28) | 13.5 | 6.6 | [40] | ||
- | - | −33 | - | - | [41] | ||
PVDF-TrFE (Bulk) | Generally Accepted Values | - | - | −24–(−39) | 5–20 | 34 | [25,35,37,38,42] |
Different Industrial Datasheets | 80–90% [43] | - | >25 | 7.5–8.5 | 9.5 | [44] | |
- | - | −38 | 7.9 | 21 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators. Nanomaterials 2023, 13, 3170. https://doi.org/10.3390/nano13243170
Bhadwal N, Ben Mrad R, Behdinan K. Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators. Nanomaterials. 2023; 13(24):3170. https://doi.org/10.3390/nano13243170
Chicago/Turabian StyleBhadwal, Neelesh, Ridha Ben Mrad, and Kamran Behdinan. 2023. "Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators" Nanomaterials 13, no. 24: 3170. https://doi.org/10.3390/nano13243170
APA StyleBhadwal, N., Ben Mrad, R., & Behdinan, K. (2023). Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators. Nanomaterials, 13(24), 3170. https://doi.org/10.3390/nano13243170