Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications
Abstract
:1. Introduction
2. FDTD Modeling of Time-Varying Planar Conductive Materials
3. Design of an rGO-Enhanced Patch Antenna
3.1. Antenna Parameters and Simulation Properties
3.2. Antenna Response through the Variation of the rGO Conductivity
3.3. Transient Response for Sensing Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Nurrohman, D.T.; Chiu, N.F. A review of graphene-based surface plasmon resonance and surface-enhanced Raman scattering biosensors: Current status and future prospects. Nanomaterials 2021, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Al Faruque, M.A.; Syduzzaman, M.; Sarkar, J.; Bilisik, K.; Naebe, M. A review on the production methods and applications of graphene-based materials. Nanomaterials 2021, 11, 2414. [Google Scholar] [CrossRef] [PubMed]
- Yusaf, T.; Mahamude, A.S.F.; Farhana, K.; Harun, W.S.W.; Kadirgama, K.; Ramasamy, D.; Kamarulzaman, M.K.; Subramonian, S.; Hall, S.; Dhahad, H.A. A comprehensive review on graphene nanoparticles: Preparation, properties, and applications. Sustainability 2022, 14, 2336. [Google Scholar] [CrossRef]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef]
- Wang, Z.; Colombi Ciacchi, L.; Wei, G. Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl. Sci. 2017, 7, 1175. [Google Scholar] [CrossRef] [Green Version]
- Bei, H.P.; Yang, Y.; Zhang, Q.; Tian, Y.; Luo, X.; Yang, M.; Zhao, X. Graphene-based nanocomposites for neural tissue engineering. Molecules 2019, 24, 658. [Google Scholar] [CrossRef] [Green Version]
- Elsheakh, D.N. Frequency reconfigurable and radiation pattern steering of monopole antenna based on graphene pads. In Proceedings of the 2019 IEEE-APS Topical Conf. Antennas Propag. Wireless Commun (APWC), Granada, Spain, 9–13 September 2019; pp. 436–440. [Google Scholar]
- Ghivela, G.C.; Sengupta, J. The promise of graphene: A survey of microwave devices based on graphene. IEEE Microw. Mag. 2020, 21, 48–65. [Google Scholar] [CrossRef]
- Šedajová, V.; Jakubec, P.; Bakandritsos, A.; Ranc, V.; Otyepka, M. New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative. Nanomaterials 2020, 10, 1731. [Google Scholar] [CrossRef]
- Cano, P.H.Z.; Zaharis, Z.D.; Yioultsis, T.V.; Kantartzis, N.V.; Lazaridis, P.I. Pattern Reconfigurable Antennas at Millimeter-Wave Frequencies: A Comprehensive Survey. IEEE Access 2022, 10, 83029–83042. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer grapheme. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef] [PubMed]
- Dubowchik, G.M.; King, H.D.; Pham-Kaplita, K. Graphene for antenna applications: Opportunities and challenges from microwaves to THz. Tetrahedron Lett. 1997, 38, 5261–5264. [Google Scholar] [CrossRef]
- Brodie, B. On the atomic weight of graphite. Philos. Trans. R. Soc. 1859, 149, 249–259. [Google Scholar]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1344. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.B.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-Step Fabrication of Graphene Oxide Enhanced Magnetic Composite Gel for Highly Efficient Dye Adsorption and Catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685. [Google Scholar] [CrossRef]
- Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem. 2012, 173, 1–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, R.; Long, F.; Wang, J. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 2015, 134, 435–442. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Kim, J.N.; Choi, H.J. Graphene oxide and its inorganic composites: Fabrication and electrorheological response. Materials 2019, 12, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. Trends Anal. Chem 2010, 29, 954–965. [Google Scholar] [CrossRef]
- Perkins, F.K.; Friedman, A.L.; Cobas, E.; Campbell, P.M.; Jernigan, G.G.; Jonker, B.T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Li, P.; Cao, Y. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666–20677. [Google Scholar] [CrossRef]
- Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z.; Shi, T.; Zettl, A.; Carraro, C.; Worsley, M.A.; Maboudian, R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158–5165. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Dias, W.; Rubira, R.J.; Alaferdov, A.V.; Vaz, A.R.; Singh, R.K.; Teixeira, S.R.; Constantino, C.J.; Moshkalev, S.A. Simple and fast approach for synthesis of reduced graphene oxide-MoS2 hybrids for room temperature gas detection. IEEE Trans. Electron. Devices 2018, 65, 3943–3949. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Ocola, L.E.; Chen, J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 2009, 20, 445502. [Google Scholar] [CrossRef]
- Li, W.; Geng, X.; Guo, Y.; Rong, J.; Gong, Y.; Wu, L.; Zhang, X.; Li, P.; Xu, J.; Cheng, G.; et al. Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 2011, 5, 6955–6961. [Google Scholar] [CrossRef]
- Song, L.; Wu, B.; Zhang, X.; Huang, B. Demonstration of wireless gas sensor using reduced graphene oxide loaded patch antenna. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Ionov, A.N.; Volkov, M.P.; Nikolaeva, M.N.; Smyslov, R.Y.; Bugrov, A.N. The magnetization of a composite based on reduced graphene oxide and polystyrene. Nanomaterials 2021, 11, 403. [Google Scholar] [CrossRef]
- dos Santos Almeida, A.; Bahamon, D.A.; Peres, N.M.R.; de Matos, C.J.S. A critical analysis on the sensitivity enhancement of surface plasmon resonance sensors with graphene. Nanomaterials 2022, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 2007, 19, 026222. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.T.; Lee, K.M.; Son, B.H.; Park, S.J.; Park, D.J.; Park, J.Y.; Lee, S.; Ahn, Y.H. Terahertz conductivity of reduced graphene oxide films. Opt. Express 2013, 21, 7633. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Mak, J.C.; Sarris, C.D. FDTD-compatible broadband surface impedance boundary conditions for graphene. In Proceedings of the 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 9–13 September 2013; pp. 740–743. [Google Scholar] [CrossRef]
- Bouzianas, G.D.; Kantartzis, N.V.; Yioultsis, T.V.; Tsiboukis, T.D. Consistent study of graphene structures through the direct incorporation of surface conductivity. IEEE Trans. Magn. 2014, 50, 161–164. [Google Scholar] [CrossRef]
- Nayyeri, V.; Soleimani, M.; Ramahi, O.M. Wideband modeling of graphene using the finite-difference time-domain method. IEEE Trans. Antennas Propag. 2013, 61, 6107–6114. [Google Scholar] [CrossRef]
- Amanatiadis, S.A.; Kantartzis, N.V.; Ohtani, T.; Kanai, Y. Precise modeling of magnetically biased graphene through a recursive convolutional FDTD method. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Kelley, D.F.; Luebbers, R.J. Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 1996, 44, 792–797. [Google Scholar] [CrossRef]
- CST Studio Suite: Electromagnetic Field Simulation Software; Dassault Systemes: Paris, France, 2022.
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
Implementation | Planar Conductivity | Dispersion (Accuracy) | Time-Varying Properties |
---|---|---|---|
Ref. [39] | as impedance | ✓ (2nd order) | ✗ |
Ref. [40] | ✓ | ADE (2nd order) | ✗ |
Ref. [41] | ✓ | ADE (2nd order) | ✗ |
Ref. [42] | ✓ | RCM (1st order) | ✗ |
Ref. [43] | ✗ | PLRC (2nd order) | ✗ |
Ref. [44] | as impedance | ✓ (2nd order) | ✗ |
This work | ✓ | PLRC (2nd order) | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata Cano, P.H.; Amanatiadis, S.; Zaharis, Z.D.; Yioultsis, T.V.; Lazaridis, P.I.; Kantartzis, N.V. Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications. Nanomaterials 2023, 13, 384. https://doi.org/10.3390/nano13030384
Zapata Cano PH, Amanatiadis S, Zaharis ZD, Yioultsis TV, Lazaridis PI, Kantartzis NV. Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications. Nanomaterials. 2023; 13(3):384. https://doi.org/10.3390/nano13030384
Chicago/Turabian StyleZapata Cano, Pablo H., Stamatios Amanatiadis, Zaharias D. Zaharis, Traianos V. Yioultsis, Pavlos I. Lazaridis, and Nikolaos V. Kantartzis. 2023. "Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications" Nanomaterials 13, no. 3: 384. https://doi.org/10.3390/nano13030384
APA StyleZapata Cano, P. H., Amanatiadis, S., Zaharis, Z. D., Yioultsis, T. V., Lazaridis, P. I., & Kantartzis, N. V. (2023). Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications. Nanomaterials, 13(3), 384. https://doi.org/10.3390/nano13030384