Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation
Abstract
:1. Introduction
2. Computational Models and Methods
2.1. Details of MD
2.2. Potential
3. Results and Discussion
3.1. Analysis of Stress–Strain Characteristics of the SiC(0001)/Al Interface Models
3.2. Wigner–Seitz Defect Analysis on the SiC(0001)/Al Interface Models
3.3. Analysis of Tensile Processes of Four SiC(0001)-Si/Al Models
3.4. Structure and Dislocation Analysis of Four SiC(0001)-Si/Al Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Lifeng, W.; Jianyue, R. Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 2008, 21, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J. Aluminium in Innovative Light-Weight Car Design. Mater. Trans. 2011, 52, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Lotfian, S.; Rodríguez, M.; Yazzie, K.E.; Chawla, N.; Llorca, J.; Molina-Aldareguía, J.M. Molina-Aldareguia, High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 2013, 61, 4439–4451. [Google Scholar] [CrossRef] [Green Version]
- Chandra, N.; Li, H.; Shet, C.; Ghonem, H. Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int. J. Solids Struct. 2002, 39, 2827–2855. [Google Scholar] [CrossRef]
- Luo, Z. Crystallography of SiC/MgAlO/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite. Acta Mater. 2006, 54, 47–58. [Google Scholar] [CrossRef]
- Saberi, Y.; Zebarjad, S.; Akbari, G. On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J. Alloys Compd. 2009, 484, 637–640. [Google Scholar] [CrossRef]
- Reddy, M.P.; Shakoor, R.A.; Parande, G.; Manakari, V.; Ubaid, F.; Mohamed, A.M.; Gupta, M. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. 2017, 27, 606–614. [Google Scholar] [CrossRef]
- Gong, D.; Cao, Y.; Deng, X.; Jiang, L. Higher proportional limit of SiC/Al composites with nano-scaled stacking faults. Compos. Commun. 2022, 32, 101188. [Google Scholar] [CrossRef]
- Candan, E.; Ahlatci, H.; Çïmenoğlu, H. Abrasive wear behaviour of Al-SiC composites produced by pressure infiltration technique. Wear 2001, 247, 133–138. [Google Scholar] [CrossRef]
- Ma, T.; Yamaura, H.; Koss, D.A.; Voigt, R.C. Dry sliding wear behavior of cast SiC-reinforced Al MMCs. Mater. Sci. Eng. R 2003, 360, 116–125. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J.; Lee, D.; Jo, I.; Lee, S.K.; Ryu, H.J. Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites. J. Alloys Compd. 2020, 831, 154647. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D.B.; Su, Y.; Zhang, J.; Gan, C.L.; Zhang, D. Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars. Scripta Mater. 2016, 114, 56–59. [Google Scholar] [CrossRef]
- Gong, D.; Zhu, M.; You, Z.; Han, H.; Chao, Z.; Jiang, L. In-situ TEM study on the effect of stacking faults on micro-plasticity and proportional limit in SiC/Al composites. Compos. Part B Eng. 2022, 244, 110180. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Ma, D.; Wang, C. First-principle calculations on the structure of 6H-SiC/Al interface. Mater. Res. Express 2019, 6, 065015. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Wang, C.; Mao, A. Effects of vacancies at Al(111)/6H-SiC(0001) interfaces on deformation behavior: A first-principle study. Comput. Mater. Sci. 2019, 158, 110–116. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study. J. Alloys Compd. 2019, 791, 530–539. [Google Scholar] [CrossRef]
- Luo, X.; Qian, G.; Wang, E.G.; Chen, C. Molecular-dynamics simulation of Al/SiC interface structures. Phys. Rev. B 1999, 59, 10125–10131. [Google Scholar] [CrossRef]
- Huo, S.; Xie, L.; Xiang, J.; Pang, S.; Hu, F.; Umer, U. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites. Appl. Phys. A 2018, 124, 209. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar]
- Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater. 2011, 59, 5661–5673. [Google Scholar] [CrossRef]
- Huang, Y.H.; Jiang, D.L.; Zhang, H.; Chen, Z.M.; Huang, Z.R. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Phys. Sin. 2017, 66, 017501. [Google Scholar]
- Zhou, X.; Zimmerman, J.; Reedy, E.; Moody, N. Molecular dynamics simulation based cohesive surface representation of mixed mode fracture. Mech. Mater. 2008, 40, 832–845. [Google Scholar] [CrossRef]
- Zhou, X.; Moody, N.; Jones, R.; Zimmerman, J.; Reedy, E. Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch. Acta Mater. 2009, 57, 4671–4686. [Google Scholar] [CrossRef]
- McLellan, A.G. Virial Theorem Generalized. Am. J. Phys. 1974, 42, 239–243. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Sadigh, B.; Erhart, P.; Caro, A. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations. Model. Simul. Mater. Sci. Eng. 2009, 17, 075005. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simulat. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Cassone, G.; Kruse, H.; Sponer, J. Interactions between cyclic nucleotides and common cations: An ab initio molecular dynamics study. Phys. Chem. Chem. Phys. 2019, 21, 8121. [Google Scholar] [CrossRef]
- Cassone, G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393–3407. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, C.R.; Shin, Y.C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics. Compos. Part A Appl. S. 2011, 42, 355–363. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, N. An inverse adhesion problem for extracting interfacial pair potentials for the Al(001)/3C-SiC(001) interface. Inverse Probl. 2008, 24, 035019. [Google Scholar] [CrossRef]
- Qiu, C.; Su, Y.; Chen, B.; Yang, J.; Li, Z.; Ouyang, Q.; Guo, Q.; Xiong, D.; Zhang, D. First-principles investigation of interfacial stability, mechanical behavior and failure mechanism of β-SiC(111)/Al(111) interfaces. Comp. Mater. Sci. 2020, 175, 109608. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Jia, Y.; Xie, J. Calculating Study on Properties of Al(111)/6H-SiC(0001) Interfaces. Metals 2020, 10, 1197. [Google Scholar] [CrossRef]
- Arsenault, R.; Pande, C. Interfaces in metal matrix composites. Scr. Met. 1984, 18, 1131–1134. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, Y. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation. Mater. Sci. Eng. A 2019, 747, 177–184. [Google Scholar] [CrossRef]
Element Name | Crystal Structure | Space Group | Lattice Parameters (nm) |
---|---|---|---|
Al | FCC | Fm-3m | a = b = c = 0.4049 |
6H-SiC | Hexagonal | P63mc | a = b = 0.3095; c = 1.5185 |
6H-SiC | Al | Orientation Relationship | Dimensions X × Y × Z (Å) |
---|---|---|---|
(0001) | (001) | 40 × 120 × 110 | |
(0001) | (110) | 40 × 121 × 110 | |
(0001) | (111) | 40 × 120 × 110 | |
(0001) | (112) | 40 × 126 × 110 |
System | Parameters | Morse Potential |
---|---|---|
Al-Si | Do (eV) | 0.4824 |
α (1/Å) | 1.322 | |
ro (Å) | 2.92 | |
Al-C | Do (eV) | 0.4691 |
α (1/Å) | 1.738 | |
ro (Å) | 2.246 |
Si | Al | Elongations | Tensile Strength (GPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
(0001)-Si | (001) | 0.080 | 7.614 | 119.24 |
(0001)-Si | (110) | 0.141 | 6.671 | 91.03 |
(0001)-Si | (111) | 0.120 | 5.866 | 103.81 |
(0001)-Si | (112) | 0.109 | 6.727 | 112.39 |
(0001)-C | (001) | 0.081 | 7.641 | 119.08 |
(0001)-C | (110) | 0.135 | 6.539 | 99.15 |
(0001)-C | (111) | 0.124 | 6.079 | 101.39 |
(0001)-C | (112) | 0.105 | 6.670 | 110.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Wang, J.; Hao, S.; Xie, J. Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials 2023, 13, 404. https://doi.org/10.3390/nano13030404
Feng K, Wang J, Hao S, Xie J. Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials. 2023; 13(3):404. https://doi.org/10.3390/nano13030404
Chicago/Turabian StyleFeng, Kai, Jiefang Wang, Shiming Hao, and Jingpei Xie. 2023. "Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation" Nanomaterials 13, no. 3: 404. https://doi.org/10.3390/nano13030404
APA StyleFeng, K., Wang, J., Hao, S., & Xie, J. (2023). Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials, 13(3), 404. https://doi.org/10.3390/nano13030404