Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Synthesis of Ligands c and d
3.2. Synthesis of [Ln(L)x] Complexes, Ln = Eu3+, Tb3+, L = a, b, c, x = 1,2,3 and XRD Data
3.3. Absorption and Luminescent Properties of Ln(c)
3.4. Synthesis of PSS-[Ln(L)x] Nanoparticles, L = a, b, c, x = 1,2, 3, Ln = Tb, Eu
3.5. Detection of Ceftriaxone Using PSS-[Eu(a)3] Colloids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comby, S.; Surender, E.M.; Kotova, O.; Truman, L.K.; Molloy, J.K.; Gunnlaugsson, T. Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg. Chem. 2014, 53, 1867–1879. [Google Scholar] [CrossRef]
- Zairov, R.; Mustafina, A.; Shamsutdinova, N.; Nizameev, I.; Moreira, B.; Sudakova, S.; Podyachev, S.; Fattakhova, A.; Safina, G.; Lundstrom, I.; et al. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones. Sci. Rep. 2017, 7, 40846. [Google Scholar] [CrossRef] [Green Version]
- Bünzli, J.G.C.G. Lanthanide light for biology and medical diagnosis. J. Lumin. 2016, 170, 866–878. [Google Scholar] [CrossRef]
- Podyachev, S.N.; Sudakova, S.N.; Zairov, R.R.; Syakaev, V.V.; Masliy, A.N.; Dusek, M.; Gubaidullin, A.T.; Dovzhenko, A.P.; Buzyurova, D.N.; Lapaev, D.V.; et al. Modulating the Inclusive and Coordinating Ability of Thiacalix[4]arene and Its Antenna Effect on Yb3-Luminescence via Upper-Rim Substitution+. Molecules 2022, 27, 6793. [Google Scholar] [CrossRef]
- Metlin, M.T.; Ambrozevich, S.A.; Metlina, D.A.; Vitukhnovsky, A.G.; Taydakov, I.V. Luminescence of pyrazolic 1,3-diketone Pr3+ complex with 1,10-phenanthroline. J. Lumin. 2017, 188, 365–370. [Google Scholar] [CrossRef]
- Emelina, T.B.; Kalinovskaya, I.V.; Mirochnik, A.G. Europium(III) complex with powerful antenna ligands: Interligand interaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 207, 222–228. [Google Scholar] [CrossRef]
- Metlin, M.T.; Goryachii, D.O.; Datskevich, N.P.; Asanov, R.K.; Aminev, D.F.; Metlina, D.A.; Taidakov, I.V. Photo- and Electroluminescent Properties of the Yb3+ Complex with Pyrazole-Substituted 1,3-Diketone and 1,10-Phenanthroline. Bull. Lebedev Phys. Inst. 2021, 48, 139–143. [Google Scholar] [CrossRef]
- Podyachev, S.N.; Zairov, R.R.; Mustafina, A.R. 1,3-Diketone Calix[4]arene Derivatives-A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021, 26, 1214. [Google Scholar] [CrossRef]
- Reid, B.L.; Stagni, S.; Malicka, J.M.; Cocchi, M.; Hanan, G.S.; Ogden, M.I.; Massi, M. Lanthanoid β-triketonates: A new class of highly efficient NIR emitters for bright NIR-OLEDs. Chem. Commun. 2014, 50, 11580–11582. [Google Scholar] [CrossRef] [Green Version]
- Mironov, L.Y.; Sveshnikova, E.B.; Ermolaev, V.L. Energy transfer from the singlet levels of diketones and dyes to lanthanide ions in nanoparticles consisting of their diketonate complexes. Opt. Spectrosc. 2014, 116, 933–940. [Google Scholar] [CrossRef]
- Clegg, J.K.; Li, F.; Lindoy, L.F. Oligo-β-diketones as versatile ligands for use in metallo-supramolecular chemistry: Recent progress and perspectives. Coord. Chem. Rev. 2022, 455, 214355. [Google Scholar] [CrossRef]
- Podyachev, S.N.; Gimazetdinova, G.S.; Sudakova, S.N.; Shamsutdinova, N.A.; Lapaev, D.V.; Syakaev, V.V.; Gubaidullin, A.T.; Nagimov, R.N.; Mustafina, A.R. Influence of upper rim dibromo-substitution in bis-1,3-diketone calix[4]arenes on spectral properties of ligands and their lanthanide complexes. Tetrahedron 2017, 73, 5397–5407. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Carlos, L.D. Tuning the sensitivity of Ln3+-based luminescent molecular thermometers through ligand design. J. Lumin. 2016, 169, 497–502. [Google Scholar] [CrossRef]
- Zairov, R.R.; Dovzhenko, A.P.; Podyachev, S.N.; Sudakova, S.N.; Kornev, T.A.; Shvedova, A.E.; Masliy, A.N.; Syakaev, V.V.; Alekseev, I.S.; Vatsouro, I.M.; et al. Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids Surf. B Biointerfaces 2022, 217, 112664. [Google Scholar] [CrossRef]
- Pradhan, S.; Swain, N.; Prusty, S.; Sahu, R.K.; Mishra, S. Role of extractants and diluents in recovery of rare earths from waste materials. Mater. Today Proc. 2020, 30, 239–245. [Google Scholar] [CrossRef]
- Safiulina, A.; Borisova, N.; Grigoriev, M.; Baulin, D.; Baulin, V.; Tsivadze, A. Design of Extractants for F-Block Elements in a Series of (2-(Diphenylphosphoryl)methoxyphenyl)diphenylphosphine Oxide Derivatives: Synthesis, Quantum-Chemical, and Extraction Studies. Molecules 2021, 26, 2217. [Google Scholar] [CrossRef]
- Batchu, N.K.; Li, Z.; Verbelen, B.; Binnemans, K. Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Sep. Purif. Technol. 2021, 255, 117711. [Google Scholar] [CrossRef]
- Kukkonen, E.; Virtanen, E.J.; Moilanen, J.O. α-Aminophosphonates, -Phosphinates, and -Phosphine Oxides as Extraction and Precipitation Agents for Rare Earth Metals, Thorium, and Uranium: A Review. Molecules 2022, 27, 3465. [Google Scholar] [CrossRef]
- Nazarova, A.; Padnya, P.; Cragg, P.J.; Stoikov, I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. New J. Chem. 2022, 46, 2033–2037. [Google Scholar] [CrossRef]
- Nazarova, A.A.; Yakimova, L.S.; Padnya, P.L.; Evtugyn, V.G.; Osin, Y.N.; Cragg, P.J.; Stoikov, I.I. Monosubstituted pillar[5]arene functionalized with (amino)phosphonate fragments are “smart” building blocks for constructing nanosized structures with some s- and p-metal cations in the organic phase. New J. Chem. 2019, 43, 14450–14458. [Google Scholar] [CrossRef]
- Aslandukov, A.N.; Utochnikova, V.V.; Goriachiy, D.O.; Vashchenko, A.A.; Tsymbarenko, D.M.; Hoffmann, M.; Pietraszkiewicz, M.; Kuzmina, N.P. The development of a new approach toward lanthanide-based OLED fabrication: New host materials for Tb-based emitters. Dalt. Trans. 2018, 47, 16350–16357. [Google Scholar] [CrossRef]
- Platt, A.W.G. Lanthanide phosphine oxide complexes. Coord. Chem. Rev. 2017, 340, 62–78. [Google Scholar] [CrossRef]
- Casey, K.C.; Brown, A.M.; Robinson, J.R. Yttrium and lanthanum bis(phosphine-oxide)methanides: Structurally diverse, dynamic, and reactive. Inorg. Chem. Front. 2021, 8, 1539–1552. [Google Scholar] [CrossRef]
- Kariaka, N.; Litsis, O.; Kolomzarov, Y.; Gawryszewska, P.; Smola, S.; Rusakova, N.; Trush, V.; Sliva, T.; Amirkhanov, V. Luminescent thin films based on N-(diphenylphosphoryl)benzamide EuIII and TbIII complexes for light emitting diode technology. Chem. J. Mold. 2018, 13, 54–62. [Google Scholar] [CrossRef]
- Gerstel, M.; Koehne, I.; Reithmaier, J.P.; Pietschnig, R.; Benyoucef, M. Luminescent Properties of Phosphonate Ester-Supported Neodymium(III) Nitrate and Chloride Complexes. Molecules 2022, 28, 48. [Google Scholar] [CrossRef]
- Koehne, I.; Pietschnig, R. Synthesis of Geminal Bis- and Tetrakisphosphonate Ester Derivatives and Their Coordination Behavior Towards Ca(II) Ions. Eur. J. Inorg. Chem. 2022, 2022, e202200194. [Google Scholar] [CrossRef]
- Davis, D.; Carrod, A.J.; Guo, Z.; Kariuki, B.M.; Zhang, Y.-Z.; Pikramenou, Z. Imidodiphosphonate Ligands for Enhanced Sensitization and Shielding of Visible and Near-Infrared Lanthanides. Inorg. Chem. 2019, 58, 13268–13275. [Google Scholar] [CrossRef]
- Magennis, S.W.; Parsons, S.; Pikramenou, Z. Assembly of hydrophobic shells and shields around lanthanides. Chem.-A Eur. J. 2002, 8, 5761–5771. [Google Scholar] [CrossRef]
- Magennis, S.W.; Parsons, S.; Corval, A.; Woollins, J.D.; Pikramenou, Z. Imidodiphosphinate ligands as antenna units in luminescent lanthanide complexes. Chem. Commun. 1999, 61–62. [Google Scholar] [CrossRef]
- Leach, E.G.; Shady, J.R.; Boyden, A.C.; Emig, A.L.; Henry, A.T.; Connor, E.K.; Staples, R.J.; Schaertel, S.; Werner, E.J.; Biros, S.M. X-ray crystallographic, luminescence and NMR studies of phenacyldiphenylphosphine oxide with the Ln(iii) ions Sm, Eu, Gd, Tb and Dy. Dalt. Trans. 2017, 46, 15458–15469. [Google Scholar] [CrossRef]
- Lees, A.M.J.; Platt, A.W.G. Complexes of Lanthanide Nitrates with Bis(diphenylphosphino)methane Dioxide. Inorg. Chem. 2003, 42, 4673–4679. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Artyushin, O.I.; Peregudov, A.S.; Khvostikov, V.A.; Bondarenko, N.A. Extraction Properties of Diphenyl{[N-(2-diphenylphosphinylethyl)-N-alkyl]carbamoylmethyl}phosphine Oxides in Nitric Acid Solutions. Russ. J. Inorg. Chem. 2020, 65, 905–913. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Yarkevich, A.N. Novel Bis(diphenylcarbamoylmethylphosphine oxide) Ligand for Effective Extraction of Actinides and Lanthanides from Nitric Acid Solutions. Solvent Extr. Ion Exch. 2022, 40, 493–517. [Google Scholar] [CrossRef]
- Boehme, C.; Wipff, G. Carbamoylphosphine oxide complexes of trivalent lanthanide cations: Role of counterions, ligand binding mode, and protonation investigated by quantum mechanical calculations. Inorg. Chem. 2002, 41, 727–737. [Google Scholar] [CrossRef]
- Bryleva, Y.A.; Artem’ev, A.V.; Glinskaya, L.A.; Rakhmanova, M.I.; Samsonenko, D.G.; Komarov, V.Y.; Rogovoy, M.I.; Davydova, M.P. Bright photo- and triboluminescence of centrosymmetric Eu(iii) and Tb(iii) complexes with phosphine oxides containing azaheterocycles. New J. Chem. 2021, 45, 13869–13876. [Google Scholar] [CrossRef]
- Xu, H.; Yin, K.; Huang, W. Synthesis, photophysical and electroluminescent properties of a novel bright light-emitting Eu3+ complex based on a fluorene-containing bidentate aryl phosphine oxide. Synth. Met. 2010, 160, 2197–2202. [Google Scholar] [CrossRef]
- Davydov, N.; Zairov, R.; Mustafina, A.; Syakayev, V.; Tatarinov, D.; Mironov, V.; Eremin, S.; Konovalov, A.; Mustafin, M. Determination of fluoroquinolone antibiotics through the fluorescent response of Eu(III) based nanoparticles fabricated by layer-by-layer technique. Anal. Chim. Acta 2013, 784, 65–71. [Google Scholar] [CrossRef]
- Shamsutdinova, N.; Zairov, R.; Mustafina, A.; Podyachev, S.; Sudakova, S.; Nizameev, I.; Kadirov, M.; Amirov, R. Interfacial interactions of hard polyelectrolyte-stabilized luminescent colloids with substrates. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 231–240. [Google Scholar] [CrossRef]
- Makedonskaya, M.I.; Veselova, I.A.; Kalmykov, S.N.; Shekhovtsova, T.N. Novel biosensing system for the simultaneous multiplex fluorescent determination of catecholamines and their metabolites in biological liquids. J. Pharm. Biomed. Anal. 2018, 156, 133–141. [Google Scholar] [CrossRef]
- Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei, W.; Ren, N.; Huang, L.; Huang, W. Recent developments in lanthanide-based luminescent probes. Coord. Chem. Rev. 2014, 273–274, 201–212. [Google Scholar] [CrossRef]
- Rahbar, N.; Abbaszadegan, P.; Savarizadeh, A. A sensitive fluorescent sensing strategy for nanomolar levels of metformin using graphitic carbon nitride nanosheets as nanofluoroprobe. Anal. Chim. Acta 2018, 1026, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Zairov, R.R.; Dovzhenko, A.P.; Podyachev, S.N.; Sudakova, S.N.; Masliy, A.N.; Syakaev, V.V.; Gimazetdinova, G.S.; Nizameev, I.R.; Lapaev, D.V.; Budnikova, Y.H.; et al. Rational design of efficient nanosensor for glyphosate and temperature out of terbium complexes with 1,3-diketone calix[4]arenes. Sens. Actuators B Chem. 2022, 350, 130845. [Google Scholar] [CrossRef]
- Zairov, R.R.; Nagimov, R.N.; Sudakova, S.N.; Lapaev, D.V.; Syakaev, V.V.; Gimazetdinova, G.S.; Voloshina, A.D.; Shykula, M.; Nizameev, I.R.; Samigullina, A.I.; et al. Polystyrenesulfonate-coated nanoparticles with low cytotoxicity for determination of copper(II) via the luminescence of Tb(III) complexes with new calix[4]arene derivatives. Microchim. Acta 2018, 185, 4–13. [Google Scholar] [CrossRef]
- Marais, O. Le traitement par ceftriaxone des méningites bactériennes chez l’enfant est efficace. Option/Bio 2011, 22, 4. [Google Scholar] [CrossRef]
- Tiltnes, T.S.; Kehrer, M.; Hughes, H.; Morris, T.E.; Justesen, U.S. Ceftriaxone treatment of spondylodiscitis and other serious infections with Cutibacterium acnes. J. Antimicrob. Chemother. 2020, 75, 3046–3048. [Google Scholar] [CrossRef]
- Han, Y.; Yin, Y.; Dai, X.; Chen, S.; Yang, L.; Zhu, B.; Zhong, N.; Cao, W.; Zhang, X.; Wu, Z.; et al. Widespread Use of High-dose Ceftriaxone Therapy for Uncomplicated Gonorrhea Without Reported Ceftriaxone Treatment Failure: Results From 5 Years of Multicenter Surveillance Data in China. Clin. Infect. Dis. 2020, 70, 99–105. [Google Scholar] [CrossRef]
- File, T.M.; Eckburg, P.B.; Talbot, G.H.; Llorens, L.; Friedland, H.D. Macrolide therapy for community-acquired pneumonia due to atypical pathogens: Outcome assessment at an early time point. Int. J. Antimicrob. Agents 2017, 50, 247–251. [Google Scholar] [CrossRef]
- Maass, J.S.; Wilharm, R.K.; Luck, R.L.; Zeller, M. Photoluminescent properties of three lanthanide compounds of formulae LnCl3(diphenyl((5-phenyl-1H-pyrazol-3-yl)methyl)phosphine oxide)2, Ln = Sm, Eu and Tb: X-ray structural, emission and vibrational spectroscopies, DFT and thermogravimetric studies. Inorganica Chim. Acta 2018, 471, 481–492. [Google Scholar] [CrossRef]
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511–519. [Google Scholar] [CrossRef]
- Malba, C.; Sudhakaran, U.P.; Borsacchi, S.; Geppi, M.; Enrichi, F.; Natile, M.M.; Armelao, L.; Finotto, T.; Marin, R.; Riello, P.; et al. Structural and photophysical properties of rare-earth complexes encapsulated into surface modified mesoporous silica nanoparticles. Dalt. Trans. 2014, 43, 16183–16196. [Google Scholar] [CrossRef] [PubMed]
- Werts, M.H.V.; Jukes, R.T.F.; Verhoeven, J.W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 2002, 4, 1542–1548. [Google Scholar] [CrossRef]
- Ogawa, T.; Kajita, Y.; Wasada-Tsutsui, Y.; Wasada, H.; Masuda, H. Preparation, Characterization, and Reactivity of Dinitrogen Molybdenum Complexes with Bis(diphenylphosphino)amine Derivative Ligands that Form a Unique 4-Membered P–N–P Chelate Ring. Inorg. Chem. 2013, 52, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Stabnikov, P.A.; Pervukhina, N.V.; Kuratieva, N.V.; Kryuchkova, N.A.; Korolkov, I.V.; Urkasym kyzy, S.; Sysoev, S.V.; Babailov, S.P. New polymorphic modification of Y, Ho, Tm and Lu tris-2,2,6,6-tetramethyl-heptane-2,4-dionates: Structure, volatility and luminescence. Polyhedron 2021, 198, 115077. [Google Scholar] [CrossRef]
- Huang, S.; Sysoev, S.V.; Stabnikov, P.A.; Pervukhina, N.V.; Korolkov, I.V.; Mosyagina, S.A. Crystal structures of tris-dipivaloylmetanates of Tm3+ and Yb3+. Jiegou Huaxue 2018, 37, 640–644. [Google Scholar] [CrossRef]
- Levy, D.; Reisfeld, R.; Avnir, D. Fluorescence of europium(III) trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem. Phys. Lett. 1984, 109, 593–597. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Rusakova, N.V.; Kost, S.S.; Mustafina, A.R.; Amirov, R.R.; Zairov, R.R.; Solovieva, S.E.; Antipin, I.S.; Konovalov, A.I.; Korovin, Y.V. Spectral-luminescence and magnetic relaxation properties of lanthanide-p-sulfonatothiacalix[4]arenes in aqueous solution of surfactants. Russ. Chem. Bull. 2008, 57, 567–572. [Google Scholar] [CrossRef]
- Karpov, V.M.; Spektor, D.V.; Beklemishev, M.K. Determination of ceftriaxone by the fluorescence quenching of quantum dots using binding with polyethyleneimine. J. Anal. Chem. 2016, 71, 519–526. [Google Scholar] [CrossRef]
- Shah, J.; Jan, M.R.; Shah, S.; Naeem, M. Spectrofluorimetric Protocol for Ceftriaxone in Commercial Formulation and Human Plasma After Condensation with Formaldehyde and Ethyl Acetoacetate. J. Fluoresc. 2011, 21, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, Y.; Zhou, M.; Li, L.; Chen, H. Determination of ceftriaxone sodium in pharmaceutical formulations by flow injection analysis with acid potassium permanganate chemiluminescence detection. Anal. Sci. 2006, 22, 183–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, J.; Jan, M.R.; Shah, S. Inayatullah Development and validation of a spectrofluorimetric method for the quantification of ceftriaxone in pharmaceutical formulations and plasma. Luminescence 2013, 28, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Pourmahdi, N.; Sarrafi, A.H.M.; Larki, A. Carbon Dots Green Synthesis for Ultra-Trace Determination of Ceftriaxone Using Response Surface Methodology. J. Fluoresc. 2019, 29, 887–897. [Google Scholar] [CrossRef]
- Narimani, S.; Samadi, N. Rapid trace analysis of ceftriaxone using new fluorescent carbon dots as a highly sensitive turn-off nanoprobe. Microchem. J. 2021, 168, 106372. [Google Scholar] [CrossRef]
- Chullasat, K.; Kanatharana, P.; Bunkoed, O. Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. Sens. Actuators B Chem. 2019, 281, 689–697. [Google Scholar] [CrossRef]
- Samadi, N.; Narimani, S. An ultrasensitive and selective method for the determination of Ceftriaxone using cysteine capped cadmium sulfide fluorescence quenched quantum dots as fluorescence probes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 163, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhu, Z.; Bai, X.; Qu, J. Determination of Ceftriaxone Sodium by Fluorescence Probes of L-Cysteine Capped ZnS Quantum Dots. Nanosci. Nanotechnol. Lett. 2013, 5, 1051–1057. [Google Scholar] [CrossRef]
- Gonzalez, M.A.; Walker, A.S.; Cao, K.J.; Lazzari-Dean, J.R.; Settineri, N.S.; Kong, E.J.; Kramer, R.H.; Miller, E.W. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. J. Am. Chem. Soc. 2021, 143, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- Reisfeld, R.; Zigansky, E.; Gaft, M. Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol. Phys. 2004, 102, 1319–1330. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
R | Tau_Rad (ms) | lexc (nm) | Tau_Meas(ms) | PL Efficiency | |
---|---|---|---|---|---|
[Tb(a)3] | - | - | 2.20 | ||
[Tb(b)2(NO3)3] | - | - | 4.79 | ||
[Tb(c)(NO3)3(H2O)] | - | - | 3.05 | ||
[Eu(a)3] | 11.22 | 1.49 | 275 | 1.5 | 1.00 |
[Eu(b)2(NO3)3] | 1.52 | 6.86 | 271 | 3.90 | 0.57 |
[Eu(c)(NO3)3(H2O)] | 1.38 | 7.40 | 271 | 4.20 | 0.57 |
PSS-[Eu(a)3] | 12.18 | 1.41 | 273 | 0.46 | 0.33 |
PSS-[Eu(b)2(NO3)3] | 1.17 | 8.10 | 271 | 3.50 | 0.43 |
PSS[Eu(c)(NO3)3(H2O)] | 0.86 | 10.13 | 271 | 3.33 | 0.33 |
Name | dh (nm) | PDI | ζ (mV) |
---|---|---|---|
[Eu(a)3] | 1305.0 ± 62.7 | 0.199 ± 0.182 | –32.9 ± 0.6 |
[Eu(b)2(NO3)3] | 878.6 ± 28.9 | 0.659 ± 0.016 | 35.7 ± 0.5 |
[Eu(c)(NO3)3(H2O)] | 1922.0 ± 133.5 | 0.265 ± 0.157 | 28.3 ± 1.2 |
PSS-[Eu(a)3] | 314.9 ± 11.2 | 0.272 ± 0.006 | –27.1 ± 0.7 |
PSS-[Eu(b)2(NO3)3] | 522.2 ± 58.3 | 0.549 ± 0.040 | –67.1 ± 0.8 |
PSS-[Eu(c)(NO3)3(H2O)] | 646.9 ± 68.5 | 0.561 ± 0.038 | –62.0 ± 2.3 |
Introduced | Remain within the Composition of Colloids | CLn in Supernatant 1 | CLn in Supernatant 2 | Total Loss of Ln(III) | |||||
---|---|---|---|---|---|---|---|---|---|
мM | мM | % | мM | % | мM | % | мM | % | |
PSS-[Eu(a)3] | 0.5 | 0.344 | 68.94 | 0.13 | 26.50 | 0.023 | 4.55 | 0.155 | 31.05 |
PSS-[Eu(b)2(NO3)3] | 0.5 | 0.108 | 21.69 | 0.37 | 73.49 | 0.024 | 4.82 | 0.392 | 78.31 |
PSS-[Eu(c)(NO3)3(H2O)] | 0.5 | 0.116 | 23.29 | 0.38 | 37.67 | 0.007 | 1.38 | 38.36 | 76.71 |
Luminescent Compound | LOD (M) |
---|---|
CdSe/CdS/ZnS quantum dots [59] | 1 × 10–6 |
Ceftriaxone converted into a fluorescent compound [60] | 3.5 × 10−8 |
Chemiluminescence emission generated from the oxidation of ceftriaxone sodium [61] | 4.5 × 10–8 |
Ceftriaxone converted into a fluorescent product [62] | 2.3 × 10–9 |
Carbonized blue crab shell carbon dots [63] | 9.0 × 10–9 |
Chicken drumstick-derived carbon dots [64] | 4.4 ×10–10 |
Graphene quantum dots in a molecularly imprinted polymer MIP-GQDs [65] | 1.8 × 10–10 |
L-cysteine (Cys) coated CdS QDs [66] | 1.3 × 10–9 |
L-cysteine capped ZnS (L-Cys-ZnS) QDs [67] | 9.0 × 10−8 |
Our paper | 9.7 × 10–7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zairov, R.; Dovzhenko, A.; Terekhova, N.; Kornev, T.; Zhou, Y.; Huang, Z.; Tatarinov, D.; Nizameeva, G.; Fayzullin, R.R.; Gubaidullin, A.T.; et al. Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection. Nanomaterials 2023, 13, 438. https://doi.org/10.3390/nano13030438
Zairov R, Dovzhenko A, Terekhova N, Kornev T, Zhou Y, Huang Z, Tatarinov D, Nizameeva G, Fayzullin RR, Gubaidullin AT, et al. Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection. Nanomaterials. 2023; 13(3):438. https://doi.org/10.3390/nano13030438
Chicago/Turabian StyleZairov, Rustem, Alexey Dovzhenko, Natalia Terekhova, Timur Kornev, Ying Zhou, Zeai Huang, Dmitry Tatarinov, Guliya Nizameeva, Robert R. Fayzullin, Aidar T. Gubaidullin, and et al. 2023. "Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection" Nanomaterials 13, no. 3: 438. https://doi.org/10.3390/nano13030438
APA StyleZairov, R., Dovzhenko, A., Terekhova, N., Kornev, T., Zhou, Y., Huang, Z., Tatarinov, D., Nizameeva, G., Fayzullin, R. R., Gubaidullin, A. T., Salikhova, T., Enrichi, F., Mironov, V. F., & Mustafina, A. (2023). Phosphineoxide-Chelated Europium(III) Nanoparticles for Ceftriaxone Detection. Nanomaterials, 13(3), 438. https://doi.org/10.3390/nano13030438