PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MnZn Ferrites
2.3. Coating of PEG Polymer on MnZn Ferrites
2.4. Characterization
2.5. Complete Blood Count (CBC) Test
2.6. In Vitro Blood Coagulation Test
2.7. Cytotoxicity Assay
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
- The average particle size of the synthesized MnZn ferrites with normal and hierarchical structures was about 40, and 20 nm, respectively.
- PEG coating improved the colloidal stability and biocompatibility of nanoparticles with a slight decrease in Ms values.
- Adding PEG-coated and uncoated MnZn ferrite nanoparticles to PBS considerably improved the contrast quality of MR images.
- RBC, blood coagulation and cell cytotoxic studies under laboratory conditions showed that both synthesized MnZn ferrite nanoparticles have no negative effects on blood factors and cell viability, respectively.
- The PEG-coated MnZn ferrite nanoparticles with hierarchical structure synthesized in the current study can be considered as an MRI contrast agent at concentrations between 0.1 and 0.3 mg/mL.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Narayan, R. Encyclopedia of Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Yim, H.; Seo, S.; Na, K. MRI Contrast Agent-Based Multifunctional Materials: Diagnosis and Therapy. J. Nanomater. 2011, 2011, 19. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Huh, Y.-M.; Jun, Y.-W.; Seo, J.-W.; Jang, J.-T.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.Y.; Suh, J.-S.; et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2006, 13, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, J.; Ramalho, M.; Jay, M.; Burke, L.M.; Semelka, R.C. Gadolinium toxicity and treatment. Magn. Reson. Imaging 2016, 34, 1394–1398. [Google Scholar] [CrossRef] [Green Version]
- Gayathri, T.; Sundaram, N.M.; Kumar, R.A. Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging and Cancer Theranostics. J. Bionanoscience 2015, 9, 409–423. [Google Scholar] [CrossRef]
- Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, L.I.; Somoza, Á.; Marco, J.F.; Serna, C.J.; Morales, M.P. Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities. J. Nanopart. Res. 2012, 14, 873. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.-T.; Nah, H.; Lee, J.-H.; Moon, S.H.; Kim, M.G.; Cheon, J. Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 1234–1238. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.; Nkambule, T.T.; Mamba, B.B. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 2019, 107, 110314. [Google Scholar] [CrossRef]
- Thakur, P.; Chahar, D.; Taneja, S.; Bhalla, N.; Thakur, A. A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 2020, 46, 15740–15763. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Yang, G. Synthesis and magnetic properties of Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 2007, 312, 464–469. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, T.; Meng, J. Hydrothermal synthesis of Mn–Zn ferrites from spent alkaline Zn–Mn batteries. Particuology 2009, 7, 491–495. [Google Scholar] [CrossRef]
- Vlazan, P.; Vasile, M. Synthesis and characterization CoFe2O4 nanoparticles prepared by the hydrothermal method. Optoelectron. Adv. Mater.-Rapid Commun. 2010, 4, 1307–1309. [Google Scholar]
- Faraji, S.; Dini, G.; Zahraei, M. Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J. Magn. Magn. Mater. 2018, 475, 137–145. [Google Scholar] [CrossRef]
- Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; et al. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology 2016, 27, 255702–255714. [Google Scholar] [CrossRef]
- Ali, L.M.; Marzola, P.; Nicolato, E.; Fiorini, S.; Guillamón, M.D.L.H.; Piñol, R.; Gabilondo, L.; Millán, A.; Palacio, F. Polymer-coated superparamagnetic iron oxide nanoparticles as T2 contrast agent for MRI and their uptake in liver. Futur. Sci. OA 2019, 5, FSO235. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, A.; Hosseini, H.R.M.; Shokrgozar, M.A.; Ahmadi, R.; Oghabian, M.A. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int. J. Pharm. 2012, 433, 129–141. [Google Scholar] [CrossRef]
- Ruiz, A.; Salas, G.; Calero, M.; Hernández, Y.; Villanueva, A.; Herranz, F.; Veintemillas-Verdaguer, S.; Martínez, E.; Barber, D.; Morales, M. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomater. 2013, 9, 6421–6430. [Google Scholar] [CrossRef] [Green Version]
- Su, B.-L.; Sanchez, C.; Yang, X.-Y. Insights into Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science, 1st ed.; Wiley VCH: Weinheim, Germany, 2011; pp. 1–27. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, F. (Eds.) Advanced Hierarchical Nanostructured Materials; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Sapna; Budhiraja, N.; Kumar, V.; Singh, S. Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 2018, 45, 1067–1076. [Google Scholar] [CrossRef]
- Phong, P.T.; Nam, P.; Manh, D.H.; Tung, D.K.; Lee, I.-J.; Phuc, N. Studies of the Magnetic Properties and Specific Absorption of Mn0.3Zn0.7Fe2O4 Nanoparticles. J. Electron. Mater. 2014, 44, 287–294. [Google Scholar] [CrossRef]
- Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 2004, 450, 34–41. [Google Scholar] [CrossRef]
- Faraji, S.; Dini, G.; Zahraei, M. The Effect of pH and Duration of Hydrothermal Process on the Synthesis of Manganese Ferrite Nanoparticles. J. Adv. Mater. Eng. Esteghlal 2018, 37, 105–111. [Google Scholar]
- Karaagac, O.; Köçkar, H. The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci. Mater. Electron. 2020, 31, 2567–2574. [Google Scholar] [CrossRef]
- Cai, B.; Zhao, M.; Ma, Y.; Ye, Z.; Huang, J. Bioinspired Formation of 3D Hierarchical CoFe2O4 Porous Microspheres for Magnetic-Controlled Drug Release. ACS Appl. Mater. Interfaces 2015, 7, 1327–1333. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [Green Version]
- Mannu, R.; Karthikeyan, V.; Velu, N.; Arumugam, C.; Roy, V.A.L.; Gopalan, A.-I.; Saianand, G.; Sonar, P.; Lee, K.-P.; Kim, W.-J.; et al. Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid Nanofluid Formulation, Properties and Drug Delivery Prospects. Nanomaterials 2021, 11, 440. [Google Scholar] [CrossRef]
- Tenório-Neto, E.; Jamshaid, T.; Eissa, M.; Kunita, M.H.; Zine, N.; Agusti, G.; Fessi, H.; El-Salhi, A.E.; Elaissari, A. TGA and magnetization measurements for determination of composition and polymer conversion of magnetic hybrid particles. Polym. Adv. Technol. 2015, 26, 1199–1208. [Google Scholar] [CrossRef]
- Estelrich, J.; Sanchez-Martin, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.; Villanova, J.; Ines, D.M.; Chen, J.; Lee, S.S.; Xiao, Z.; Guo, X.; Dunn, J.A.; Stueber, D.D.; Decuzzi, P.; et al. Sensitive T2 MRI Contrast Agents from the Rational Design of Iron Oxide Nanoparticle Surface Coatings. J. Phys. Chem. C 2023, 127, 1057–1070. [Google Scholar] [CrossRef]
Powder | Fe (wt.%) | Mn (wt.%) | Zn (wt.%) | Molar Ratio (Fe/Mn + Zn) |
---|---|---|---|---|
Ferrite with normal morphology | 65.1 | 18.3 | 16.6 | 1.99 |
Ferrite with hierarchical morphology | 63.9 | 17.6 | 18.5 | 1.90 |
Powder | Concentration (mg/mL) | RBC * (106/µL) | aPPT * (s) | PT * (s) |
---|---|---|---|---|
MnZn ferrite with normal morphology | 0.1 | 5.37 ± 0.02 | 30.1 ± 0.1 | 12.9 ± 0.1 |
0.2 | 5.48 ± 0.02 | 30 ± 0.2 | 13.0 ± 0.2 | |
0.3 | 5.40 ± 0.03 | 29.5 ± 0.1 | 12.9 ± 0.2 | |
PEG-coated MnZn ferrite with normal morphology | 0.1 | 5.32 ± 0.05 | 29.8 ± 0.3 | 13.1 ± 0.3 |
0.2 | 5.51 ± 0.02 | 30.4 ± 0.2 | 12.9 ± 0.3 | |
0.3 | 5.48 ± 0.04 | 29.9 ± 0.2 | 12.9 ± 0.2 | |
MnZn ferrite with hierarchical morphology | 0.1 | 5.39 ± 0.03 | 31.4 ± 0.1 | 13.1 ± 0.2 |
0.2 | 5.42 ± 0.02 | 30 ± 0.3 | 12.9 ± 0.2 | |
0.3 | 5.52 ± 0.02 | 30.2 ± 0.2 | 12.9 ± 0.3 | |
PEG-coated MnZn ferrite with hierarchical morphology | 0.1 | 5.38 ± 0.04 | 29.5 ± 0.3 | 12.8 ± 0.1 |
0.2 | 5.47 ± 0.04 | 29.6 ± 0.3 | 12.8 ± 0.2 | |
0.3 | 5.48 ± 0.03 | 29.9 ± 0.2 | 12.9 ± 0.2 | |
Control | - | 5.62 ± 0.05 | 31.4 ± 0.2 | 12.8 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheraghali, S.; Dini, G.; Caligiuri, I.; Back, M.; Rizzolio, F. PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent. Nanomaterials 2023, 13, 452. https://doi.org/10.3390/nano13030452
Cheraghali S, Dini G, Caligiuri I, Back M, Rizzolio F. PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent. Nanomaterials. 2023; 13(3):452. https://doi.org/10.3390/nano13030452
Chicago/Turabian StyleCheraghali, Sedigheh, Ghasem Dini, Isabella Caligiuri, Michele Back, and Flavio Rizzolio. 2023. "PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent" Nanomaterials 13, no. 3: 452. https://doi.org/10.3390/nano13030452
APA StyleCheraghali, S., Dini, G., Caligiuri, I., Back, M., & Rizzolio, F. (2023). PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent. Nanomaterials, 13(3), 452. https://doi.org/10.3390/nano13030452