The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design
Abstract
:1. Introduction
2. Criteria
3. Challenges of Testing NMs In Vitro for SbD Applicability
3.1. Choice of Dispersion Protocol
3.2. Influence of Medium Components
3.3. Determining Dose Delivered to Cells
3.4. SbD Hazard Testing of NEPs and NMs Released during the Life Cycle
Feasibility and Relevance
3.5. Challenging NMs and Advanced Materials
3.5.1. Hydrophobic Particles
3.5.2. Buoyant NMs
3.5.3. Multicomponent NMs and Other Advanced Materials
4. Evaluation of In Vitro Methods for SbD Hazard Testing
4.1. Cytotoxicity
4.1.1. Most Frequently Used Assays, Strengths and Limitations
4.1.2. Predictivity and Relevance
4.1.3. Overview of Needs and Knowledge Gaps
4.2. Dissolution
4.2.1. Most Frequently Used Assays, Strengths and Limitations
Acellular Methods
Cellular Methods
4.2.2. Overview of Needs and Knowledge Gaps
4.3. Oxidative Potential and Oxidative Stress
4.3.1. Most Frequently Used Assays, Strengths and Limitations
Acellular Methods
Cellular Methods
4.3.2. Predictivity and Relevance
4.3.3. Overview of Needs and Knowledge Gaps
4.4. Inflammation
4.4.1. Most Frequently Used Assays, Strengths and Limitations
4.4.2. Overview of Needs and Knowledge Gaps
4.5. Genotoxicity
4.5.1. Most Frequently Used Assays, Strengths and Limitations
4.5.2. Overview of Needs and Knowledge Gaps
5. Discussion and Outlook
- Current hazard and risk-assessment strategies are not easily applied in an early hazard assessment for SbD applicability, as the proposed and required assays are too time-consuming and costly to be performed early in the development process of a NM.
- The suitability for SbD hazard testing of currently available in vitro assays in terms of predictivity, cost-effectiveness, sensitivity, specificity, robustness, and compatibility are largely unclear.
5.1. Assay Predictivity
5.1.1. Early Hazard Warnings
5.1.2. Hazard Ranking
5.1.3. Applicability Domains
5.1.4. Prediction Accuracy
5.1.5. Challenges in Assessing Predictivity
5.2. Outlook for Innovators, Regulators, and Industry Based on Current Knowledge
5.2.1. A Change in Mindset towards Purpose-Driven Innovations
5.2.2. Starting In Silico: Databases and SARs
5.2.3. Importance of Experimental Design
5.2.4. Combinations of Assays
5.2.5. Thresholds for Toxicity
5.2.6. Assay Standardization
5.2.7. Compatibility (NEPs and Novel Materials)
5.2.8. Gathering Experimental Data following FAIR Principles
5.2.9. The Chemical Strategy for Sustainability
6. Conclusions
- Based on current knowledge, primary cell models and more physiologically relevant exposure methods provide better predictions of in vivo results. However, the aim of SbD hazard testing is to detect early hazard warnings using simple methods. There are strong indications that simpler assays, such as acellular OP assays, static dissolution assays, and simple submerged cell-based assays for cytotoxicity, genotoxicity, and inflammation give sufficiently accurate information for identifying early hazard warnings or even hazard rankings, when carried out correctly.
- The suitability of these simple assays for SbD hazard testing has to be further confirmed in future studies. More model comparisons between simple, complex, and in vivo models are needed to investigate whether simple in vitro models are indeed sufficiently predictive and suitable for SbD hazard testing, preferably using standardized methods. Additionally, the applicability domain of in vitro assays to detect NM toxicity should be mapped more precisely to correctly interpret results.
- Assay standardization proved to be critical for the progression of SbD hazard testing as it will improve in vitro-in vivo comparisons, improve fundamental knowledge on NM toxicity, support industrial use, and is a first step towards regulatory acceptance.
- Simplicity is not always feasible when testing NMs, even though it has been put forward as one of the criteria for SbD hazard testing. Dispersion protocols, dose delivered to cells, compatibility issues, interferences, testing NEPs and NMs released along the LC, etc., all complicate SbD hazard testing of NMs and reduce achievable simplicity. Innovators, industry, regulators, and policymakers should realize that the hazard assessment of NMs and advanced materials is complex and that in vitro tests need to be further developed, tested, and evaluated to assess their suitability in identifying potential hazards.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Falk, A.; Cassee, F.R.; Valsami-Jones, E. Safe-by-Design and EU Funded NanoSafety Projects; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Chemicals Strategy for Sustainability—Towards a Toxic-Free Environment; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Gottardo, S.; Alessandrelli, M.; Amenta, V.; Atluri, R.; Barberio, G.; Bekker, C.; Bergonzo, P.; Bleeker, E.; Booth, A.M.; Borges, T.; et al. NANoREG Framework for the Safety Assessment of Nanomaterials; European Commission Joint Research Centre: Brussels, Belgium, 2017. [Google Scholar]
- Sánchez Jiménez, A.; Puelles, R.; Pérez-Fernández, M.; Gómez-Fernández, P.; Barruetabeña, L.; Jacobsen, N.R.; Suarez-Merino, B.; Micheletti, C.; Manier, N.; Trouiller, B.; et al. Safe(r) by design implementation in the nanotechnology industry. NanoImpact 2020, 20, 100267. [Google Scholar] [CrossRef]
- OECD. Moving Towards a Safe(r) Innovation Approach (SIA) for More Sustainable Nanomaterials and Nano-Enabled Products; Series on the Safety of Manufactured Nanomat; OECD: Paris, France, 2020. [Google Scholar]
- Schmutz, M.; Borges, O.; Jesus, S.; Borchard, G.; Perale, G.; Zinn, M.; Sips, Ä.A.J.A.M.; Soeteman-Hernandez, L.G.; Wick, P.; Som, C. A Methodological Safe-by-Design Approach for the Development of Nanomedicines. Front. Bioeng. Biotechnol. 2020, 8, 258. [Google Scholar] [CrossRef]
- Soeteman-Hernandez, L.G.; Apostolova, M.D.; Bekker, C.; Dekkers, S.; Grafström, R.C.; Groenewold, M.; Handzhiyski, Y.; Herbeck-Engel, P.; Hoehener, K.; Karagkiozaki, V.; et al. Safe innovation approach: Towards an agile system for dealing with innovations. Mater. Today Commun. 2019, 20, 100548. [Google Scholar] [CrossRef]
- Xia, T.; Zhao, Y.; Sager, T.; George, S.; Pokhrel, S.; Li, N.; Schoenfeld, D.; Meng, H.; Lin, S.; Wang, X.; et al. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano 2011, 5, 1223–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.; Pyrgiotakis, G.; Beltran-Huarac, J.; Zhang, Y.; Gaurav, J.; DeLoid, G.; Spyrogianni, A.; Sarosiek, K.A.; Bello, D.; Demokritou, P. Safer-by-design flame-sprayed silicon dioxide nanoparticles: The role of silanol content on ROS generation, surface activity and cytotoxicity. Part. Fibre Toxicol. 2019, 16, 40. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, D.; Xu, Q.; Zhang, Y.; Fu, F.; Diao, H.; Liu, X. Excellent binding effect of l-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing. RSC Adv. 2018, 8, 24458–24463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjorth, R.; van Hove, L.; Wickson, F. What can nanosafety learn from drug development? The feasibility of “safety by design”. Nanotoxicology 2017, 11, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, S.; Wijnhoven, S.W.P.; Braakhuis, H.M.; Soeteman-Hernandez, L.G.; Sips, A.J.A.M.; Tavernaro, I.; Kraegeloh, A.; Noorlander, C.W. Safe-by-Design part I: Proposal for nanospecific human health safety aspects needed along the innovation process. NanoImpact 2020, 18, 100227. [Google Scholar] [CrossRef]
- Di Cristo, L.; Oomen, A.G.; Dekkers, S.; Moore, C.; Rocchia, W.; Murphy, F.; Johnston, H.J.; Janer, G.; Haase, A.; Stone, V.; et al. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. Nanomaterials 2021, 11, 2623. [Google Scholar] [CrossRef]
- Arts, J.H.E.; Hadi, M.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 2015, 71, S1–S27. [Google Scholar] [CrossRef] [Green Version]
- Stone, V.; Gottardo, S.; Bleeker, E.A.J.; Braakhuis, H.; Dekkers, S.; Fernandes, T.; Haase, A.; Hunt, N.; Hristozov, D.; Jantunen, P.; et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today 2020, 35, 100941. [Google Scholar] [CrossRef]
- Rauscher, H.; Rasmussen, K.; Riego Sintes, J.; Sala, S. Safe and Sustainable by Design Chemicals and Materials; Publications Office of the EU: Luxembourg, 2022. [Google Scholar]
- Braakhuis, H.M.; Murphy, F.; Ma-Hock, L.; Dekkers, S.; Keller, J.; Oomen, A.G.; Stone, V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. Appl. In Vitro Toxicol. 2021, 7, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, S.; Oomen, A.G.; Bleeker, E.A.; Vandebriel, R.J.; Micheletti, C.; Cabellos, J.; Janer, G.; Fuentes, N.; Vázquez-Campos, S.; Borges, T.; et al. Towards a nanospecific approach for risk assessment. Regul. Toxicol. Pharmacol. 2016, 80, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halappanavar, S.; Nymark, P.; Krug, H.F.; Clift, M.J.D.; Rothen-Rutishauser, B.; Vogel, U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. Small 2021, 17, 2007628. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021, 19, e06768. [Google Scholar]
- Gulumian, M.; Cassee, F.R. Safe by design (SbD) and nanotechnology: A much-discussed topic with a prudence? Part. Fibre Toxicol. 2021, 18, 32. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 2017, 12, 355–371. [Google Scholar] [CrossRef]
- Pedersen, E.; Fant, K. Guidance Document on Good In Vitro Method Practices (GIVIMP): Series on Testing and Assessment No. 286; OECD: Paris, France, 2018. [Google Scholar]
- Faria, M.; Björnmalm, M.; Thurecht, K.J.; Kent, S.J.; Parton, R.G.; Kavallaris, M.; Johnston, A.P.R.; Gooding, J.J.; Corrie, S.R.; Boyd, B.J.; et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 2018, 13, 777–785. [Google Scholar] [CrossRef]
- Taurozzi, J.S.; Hackley, V.A.; Wiesner, M.R. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—Issues and recommendations. Nanotoxicology 2011, 5, 711–729. [Google Scholar] [CrossRef]
- Kaur, I.; Ellis, L.-J.; Römer, I.; Tantra, R.; Carriere, M.; Allard, S.; Mayne-L’Hermite, M.; Minelli, C.; Unger, W.; Potthoff, A.; et al. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J. Vis. Exp. 2017, 130, e56074. [Google Scholar] [CrossRef] [Green Version]
- Simon-Deckers, A.; Gouget, B.; Mayne-L’Hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carrière, M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008, 253, 137–146. [Google Scholar] [CrossRef]
- Hadrup, N.; Knudsen, K.B.; Carriere, M.; Mayne-L’Hermite, M.; Bobyk, L.; Allard, S.; Miserque, F.; Pibaleau, B.; Pinault, M.; Wallin, H.; et al. Safe-by-design strategies for lowering the genotoxicity and pulmonary inflammation of multiwalled carbon nanotubes: Reduction of length and the introduction of COOH groups. Environ. Toxicol. Pharmacol. 2021, 87, 103702. [Google Scholar] [CrossRef]
- Retamal Marín, R.R.; Babick, F.; Lindner, G.-G.; Wiemann, M.; Stintz, M. Effects of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions. Nanomaterials 2018, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.; Kramer, E.; Oomen, A.G.; Herrera Rivera, Z.E.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.P.; Weigel, S.; et al. Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive. ACS Nano 2012, 6, 2441–2451. [Google Scholar] [CrossRef]
- Cappellini, F.; Hedberg, Y.; McCarrick, S.; Hedberg, J.; Derr, R.; Hendriks, G.; Wallinder, I.O.; Karlsson, H.L. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 2018, 12, 602–620. [Google Scholar] [CrossRef]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Wallinder, I.O. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 2016, 18, 285. [Google Scholar] [CrossRef] [Green Version]
- Alstrup Jensen, K.; Kembouche, Y.; Christiansen, E.; Jacobsen, N.; Wallin, H.; Guiot, C.; Spalla, O.; Witschger, O. Final Protocol for Producing Suitable Manufactured Nanomaterial Exposure Media; NANOGENOTOX deliverable report 3; EAHC: Luxembourg, 2011. [Google Scholar]
- Wegner, K.D.; Dussert, F.; Truffier-Boutry, D.; Benayad, A.; Beal, D.; Mattera, L.; Ling, W.L.; Carrière, M.; Reiss, P. Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Front. Chem. 2019, 7, 466. [Google Scholar] [CrossRef] [Green Version]
- Dussert, F.; Wegner, K.D.; Moriscot, C.; Gallet, B.; Jouneau, P.-H.; Reiss, P.; Carriere, M. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy. Front. Toxicol. 2021, 3, 636976. [Google Scholar] [CrossRef]
- Tarantini, A.; Wegner, K.D.; Dussert, F.; Sarret, G.; Beal, D.; Mattera, L.; Lincheneau, C.; Proux, O.; Truffier-Boutry, D.; Moriscot, C.; et al. Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact 2019, 14, 100168. [Google Scholar] [CrossRef]
- Rosset, A.; Bartolomei, V.; Laisney, J.; Shandilya, N.; Voisin, H.; Morin, J.; Michaud-Soret, I.; Capron, I.; Wortham, H.; Brochard, G.; et al. Towards the development of safer by design TiO2-based photocatalytic paint: Impacts and performances. Environ. Sci. Nano 2021, 8, 758–772. [Google Scholar] [CrossRef]
- Roebben, G.; Ramirez-Garcia, S.; Hackley, V.A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C.M.; Rawle, A.; Elder, A.; et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res. 2011, 13, 2675–2687. [Google Scholar] [CrossRef]
- Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A.G.; Reichel, C.A.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part. Fibre Toxicol. 2008, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Kodali, V.; Gaffrey, M.; Wang, W.; Minard, K.R.; Karin, N.J.; Teeguarden, J.G.; Thrall, B.D. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro. Nanotoxicology 2014, 8, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Betts, J.N.; Johnson, M.G.; Rygiewicz, P.T.; King, G.A.; Andersen, C.P. Potential for metal contamination by direct sonication of nanoparticle suspensions. Environ. Toxicol. Chem. 2013, 32, 889–893. [Google Scholar] [CrossRef]
- Gülseren, I.; Güzey, D.; Bruce, B.D.; Weiss, J. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 2007, 14, 173–183. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. In Proceedings of Tour de Table at the 7th Meeting of the Working Party on Manufactured Nanomaterials No. 36; Series on the Safety of Manufactured Nanomaterials; OECD: Paris, France, 2012. [Google Scholar]
- Shannahan, J.H. Nanoparticle–Biocorona. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Strojan, K.; Leonardi, A.; Bregar, V.B.; Križaj, I.; Svete, J.; Pavlin, M. Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona. PLoS ONE 2017, 12, e0169552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyles, M.S.P.; Kristl, T.; Andosch, A.; Zimmermann, M.; Tran, N.; Casals, E.; Himly, M.; Puntes, V.; Huber, C.G.; Lütz-Meindl, U.; et al. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. J. Nanobiotechnol. 2015, 13, 84. [Google Scholar] [CrossRef] [Green Version]
- McConnell, K.I.; Shamsudeen, S.; Meraz, I.M.; Mahadevan, T.S.; Ziemys, A.; Rees, P.; Summers, H.D.; Serda, R.E. Reduced Cationic Nanoparticle Cytotoxicity Based on Serum Masking of Surface Potential. J. Biomed. Nanotechnol. 2016, 12, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Vranic, S.; Gosens, I.; Jacobsen, N.R.; Jensen, K.A.; Bokkers, B.; Kermanizadeh, A.; Stone, V.; Baeza-Squiban, A.; Cassee, F.R.; Tran, L.; et al. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Arch. Toxicol. 2017, 91, 353–363. [Google Scholar] [CrossRef]
- Lesniak, A.; Salvati, A.; Santos-Martinez, M.J.; Radomski, M.W.; Dawson, K.A.; Åberg, C. Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency. J. Am. Chem. Soc. 2013, 135, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, A.; Fenaroli, F.; Monopoli, M.P.; Åberg, C.; Dawson, K.A.; Salvati, A. Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano 2012, 6, 5845–5857. [Google Scholar] [CrossRef]
- Elliott, J.T.; Rösslein, M.; Song, N.W.; Toman, B.; Kinsner-Ovaskainen, A.; Maniratanachote, R.; Salit, M.L.; Petersen, E.J.; Sequeira, F.; Romsos, E.L.; et al. Toward achieving harmonization in a nano-cytotoxicity assay measurement through an interlaboratory comparison study_suppl. ALTEX-Altern. Anim. Exp. 2017, 34, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Wiemann, M.; Vennemann, A.; Venzago, C.; Lindner, G.-G.; Schuster, T.B.; Krueger, N. Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. Nanomaterials 2021, 11, 628. [Google Scholar] [CrossRef]
- Pisani, C.; Rascol, E.; Dorandeu, C.; Gaillard, J.-C.; Charnay, C.; Guari, Y.; Chopineau, J.; Armengaud, J.; Devoisselle, J.-M.; Prat, O. The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells. PLoS ONE 2017, 12, e0182906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Žūkienė, R.; Snitka, V. Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids Surf. B Biointerfaces 2015, 135, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Greulich, C.; Gebauer, J.S.; Diendorf, J.; Treuel, L.; Ruiz, L.; Gonzalez-Calbet, J.M.; Vallet-Regi, M.; Zellner, R.; Köller, M.; et al. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J. Mater. Chem. 2010, 20, 512. [Google Scholar] [CrossRef]
- Pyrgiotakis, G.; Blattmann, C.O.; Pratsinis, S.; Demokritou, P. Nanoparticle–Nanoparticle Interactions in Biological Media by Atomic Force Microscopy. Langmuir 2013, 29, 11385–11395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; DeLoid, G.; Pyrgiotakis, G.; Demokritou, P. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 2013, 7, 417–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, A.K.; Bello, D.; Cohen, J.; Demokritou, P. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 2015, 9, 871–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Pirela, S.V.; Pal, A.; Liu, J.; Srebric, J.; Demokritou, P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 2015, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.G.; Smith, J.N.; Thrall, B.D.; Baer, D.R.; Jolley, H.; Munusamy, P.; Kodali, V.; Demokritou, P.; Cohen, J.; Teeguarden, J.G. ISD3: A particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part. Fibre Toxicol. 2018, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Botte, E.; Vagaggini, P.; Zanoni, I.; Gardini, D.; Costa, A.L.; Ahluwalia, A.D. An integrated pipeline and multi-model graphical user interface for accurate nano-dosimetry. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lison, D.; Thomassen, L.C.J.; Rabolli, V.; Gonzalez, L.; Napierska, D.; Seo, J.W.; Kirsch-Volders, M.; Hoet, P.; Kirschhock, C.E.A.; Martens, J.A. Nominal and Effective Dosimetry of Silica Nanoparticles in Cytotoxicity Assays. Toxicol. Sci. 2008, 104, 155–162. [Google Scholar] [CrossRef]
- Keller, J.G.; Quevedo, D.F.; Faccani, L.; Costa, A.L.; Landsiedel, R.; Werle, K.; Wohlleben, W. Dosimetry in vitro—exploring the sensitivity of deposited dose predictions vs. affinity, polydispersity, freeze-thawing, and analytical methods. Nanotoxicology 2021, 15, 21–34. [Google Scholar] [CrossRef]
- DeLoid, G.; Cohen, J.M.; Darrah, T.; Derk, R.; Rojanasakul, L.; Pyrgiotakis, G.; Wohlleben, W.; Demokritou, P. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 2014, 5, 3514. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Weindl, P.; Lenz, A.-G.; Mayer, P.; Krebs, T.; Schmid, O. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems. Part. Fibre Toxicol. 2020, 17, 44. [Google Scholar] [CrossRef]
- Yokel, R.A.; MacPhail, R.C. Engineered nanomaterials: Exposures, hazards, and risk prevention. J. Occup. Med. Toxicol. 2011, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basinas, I.; Jiménez, A.S.; Galea, K.S.; Van Tongeren, M.; Hurley, F. A Systematic Review of the Routes and Forms of Exposure to Engineered Nanomaterials. Ann. Work. Expo. Health 2018, 62, 639–662. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Brouwer, D.H.; Koponen, I.K.; Jensen, K.A.; Fransman, W.; Van Duuren-Stuurman, B.; van Tongeren, M.; Tielemans, E. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 450–463. [Google Scholar] [CrossRef]
- Duncan, T.V.; Pillai, K. Release of Engineered Nanomaterials from Polymer Nanocomposites: Diffusion, Dissolution, and Desorption. ACS Appl. Mater. Interfaces 2015, 7, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Al-Kattan, A.; Wichser, A.; Vonbank, R.; Brunner, S.; Ulrich, A.; Zuin, S.; Arroyo, Y.; Golanski, L.; Nowack, B. Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 2015, 119, 1314–1321. [Google Scholar] [CrossRef]
- Murray, A.R.; Kisin, E.R.; Tkach, A.V.; Yanamala, N.; Mercer, R.; Young, S.-H.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part. Fibre Toxicol. 2012, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Noël, A.; Charbonneau, M.; Cloutier, Y.; Tardif, R.; Truchon, G. Rat pulmonary responses to inhaled nano-TiO2: Effect of primary particle size and agglomeration state. Part. Fibre Toxicol. 2013, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Murugadoss, S.; Brassinne, F.; Sebaihi, N.; Petry, J.; Cokic, S.M.; Van Landuyt, K.L.; Godderis, L.; Mast, J.; Lison, D.; Hoet, P.H.; et al. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part. Fibre Toxicol. 2020, 17, 10. [Google Scholar] [CrossRef]
- Saber, A.T.; Jacobsen, N.R.; Mortensen, A.; Szarek, J.; Jackson, P.; Madsen, A.M.; Jensen, K.A.; Koponen, I.K.; Brunborg, G.; Gützkow, K.B.; et al. Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part. Fibre Toxicol. 2012, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.K.; Watson, C.Y.; Pirela, S.V.; Singh, D.; Chalbot, M.-C.G.; Kavouras, I.; Demokritou, P. Linking Exposures of Particles Released from Nano-Enabled Products to Toxicology: An Integrated Methodology for Particle Sampling, Extraction, Dispersion, and Dosing. Toxicol. Sci. 2015, 146, 321–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jaques, P.A.; Chang, M.; Froines, J.R.; Sioutas, C. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles Part I: Development and laboratory characterization. J. Aerosol Sci. 2001, 32, 1281–1297. [Google Scholar] [CrossRef]
- Nowack, B.; Boldrin, A.; Caballero, A.; Hansen, S.F.; Gottschalk, F.; Heggelund, L.; Hennig, M.; Mackevica, A.; Maes, H.; Navratilova, J.; et al. Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environ. Sci. Technol. 2016, 50, 2747–2753. [Google Scholar] [CrossRef] [Green Version]
- Demokritou, P.; Lee, S.J.; Ferguson, S.T.; Koutrakis, P. A compact multistage (cascade) impactor for the characterization of atmospheric aerosols. J. Aerosol Sci. 2004, 35, 281–299. [Google Scholar] [CrossRef]
- Bein, K.J.; Wexler, A.S. A high-efficiency, low-bias method for extracting particulate matter from filter and impactor substrates. Atmos. Environ. 2014, 90, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zarcone, M.C.; Duistermaat, E.; van Schadewijk, A.; Jedynska, A.; Hiemstra, P.S.; Kooter, I.M. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L111–L123. [Google Scholar] [CrossRef] [Green Version]
- Wohlleben, W.; Brill, S.; Meier, M.W.; Mertler, M.; Cox, G.; Hirth, S.; Von Vacano, B.; Strauss, V.; Treumann, S.; Wiench, K.; et al. On the Lifecycle of Nanocomposites: Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four Nanocomposites. Small 2011, 7, 2384–2395. [Google Scholar] [CrossRef] [PubMed]
- Smulders, S.; Luyts, K.; Brabants, G.; Van Landuyt, K.; Kirschhock, C.E.A.; Smolders, E.; Golanski, L.; Vanoirbeek, J.; Hoet, P.H. Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice. Toxicol. Sci. 2014, 141, 132–140. [Google Scholar] [CrossRef]
- Smulders, S.; Luyts, K.; Brabants, G.; Golanski, L.; Martens, J.; Vanoirbeek, J.; Hoet, P.H. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicol. Lett. 2015, 232, 333–339. [Google Scholar] [CrossRef]
- Shoemaker, D.A.; Pretty, J.R.; Ramsey, D.M.; McLaurin, J.L.; Khan, A.; Teass, A.W.; Castranova, V.; Pailes, W.H.; Dalal, N.S.; Miles, P.R. Particle activity and in vivo pulmonary response to freshly milled and aged alpha-quartz. Scand. J. Work. Environ. Health 1995, 21 (Suppl. 2), 15–18. [Google Scholar] [PubMed]
- Buford, M.C.; Hamilton, R.F.; Holian, A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 2007, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polk, W.W.; Sharma, M.; Sayes, C.M.; Hotchkiss, J.A.; Clippinger, A.J. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface. Part. Fibre Toxicol. 2016, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, C.Y.; DeLoid, G.M.; Pal, A.; Demokritou, P. Buoyant Nanoparticles: Implications for Nano-Biointeractions in Cellular Studies. Small 2016, 12, 3172–3180. [Google Scholar] [CrossRef] [Green Version]
- Stock, V.; Böhmert, L.; Dönmez, M.H.; Lampen, A.; Sieg, H. An inverse cell culture model for floating plastic particles. Anal. Biochem. 2020, 591, 113545. [Google Scholar] [CrossRef]
- Saleh, N.B.; Aich, N.; Plazas-Tuttle, J.; Lead, J.R.; Lowry, G.V. Research strategy to determine when novel nanohybrids pose unique environmental risks. Environ. Sci. Nano 2015, 2, 11–18. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges. Eur. J. Pharm. Biopharm. 2009, 72, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Stone, V.; Johnston, H.; Schins, R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Hillegass, J.M.; Shukla, A.; Lathrop, S.A.; MacPherson, M.B.; Fukagawa, N.K.; Mossman, B.T. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Sayes, C.; Reed, K.L.; Warheit, D.B. Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles. Toxicol. Sci. 2007, 97, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Guadagnini, R.; Halamoda Kenzaoui, B.; Walker, L.; Pojana, G.; Magdolenova, Z.; Bilanicova, D.; Saunders, M.; Juillerat-Jeanneret, L.; Marcomini, A.; Huk, A.; et al. Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015, 9 (Suppl. 1), 13–24. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Leite, P.E.; Falagan-Lotsch, P.; Benetti, F.; Micheletti, C.; Budtz, H.C.; Jacobsen, N.R.; Lisboa-Filho, P.N.; Rocha, L.A.; Kühnel, D.; et al. Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact 2017, 8, 59–72. [Google Scholar] [CrossRef]
- Andraos, C.; Yu, I.J.; Gulumian, M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int. J. Toxicol. 2020, 39, 397–421. [Google Scholar] [CrossRef]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In vitro methods for assessing nanoparticle toxicity. In Nanotoxicity; Methods in Molecular Biology; Zhang, Q., Ed.; Humana Press: New York, NY, USA, 2019; Volume 1894, pp. 1–29. [Google Scholar] [CrossRef]
- Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012, 86, 1123–1136. [Google Scholar] [CrossRef]
- Piret, J.-P.; Bondarenko, O.M.; Boyles, M.S.P.; Himly, M.; Ribeiro, A.R.; Benetti, F.; Smal, C.; Lima, B.; Potthoff, A.; Simion, M.; et al. Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Arch. Toxicol. 2017, 91, 2315–2330. [Google Scholar] [CrossRef]
- Han, X.; Gelein, R.; Corson, N.; Wade-Mercer, P.; Jiang, J.; Biswas, P.; Finkelstein, J.N.; Elder, A.; Oberdörster, G. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 2011, 287, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Nelissen, I.; Haase, A.; Anguissola, S.; Rocks, L.; Jacobs, A.; Willems, H.; Riebeling, C.; Luch, A.; Piret, J.-P.; Toussaint, O.; et al. Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study. Nanomaterials 2020, 10, 1430. [Google Scholar] [CrossRef]
- Labouta, H.I.; Sarsons, C.; Kennard, J.; Gomez-Garcia, M.J.; Villar, K.; Lee, H.; Cramb, D.T.; Rinker, K.D. Understanding and improving assays for cytotoxicity of nanoparticles: What really matters? RSC Adv. 2018, 8, 23027–23039. [Google Scholar] [CrossRef] [Green Version]
- ISO 19007:2018; Nanotechnologies—In Vitro MTS Assay for Measuring the Cytotoxic Effect of Nanoparticles. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO/TS 21633:2021; Label-Free Impedance Technology to Assess the Toxicity of Nanomaterials In Vitro. International Organization for Standardization: Geneva, Switzerland, 2021.
- Da Luz, C.M.; Boyles, M.S.P.; Falagan-Lotsch, P.; Pereira, M.R.; Tutumi, H.R.; Santos, E.D.O.; Martins, N.B.; Himly, M.; Sommer, A.; Foissner, I.; et al. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J. Nanobiotechnol. 2017, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- NANoREG. Deliverable D 5.06. Identification and Optimization of the Most Suitable In Vitro Methodology. 2016. Available online: https://www.rivm.nl/sites/default/files/2019-01/NANoREG_D5_06_DR_Identification_and_optimization_of_the_most_suitable_in_vitro_methodology_Yo3qmgPoS9aEh1-9l2OVcA.pdf (accessed on 14 November 2022).
- Xia, T.; Hamilton, R.F.; Bonner, J.C.; Crandall, E.D.; Elder, A.; Fazlollahi, F.; Girtsman, T.A.; Kim, K.; Mitra, S.; Ntim, S.A.; et al. Interlaboratory Evaluation of In Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environ. Health Perspect. 2013, 121, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Landsiedel, R.; Sauer, U.G.; Ma-Hock, L.; Schnekenburger, J.; Wiemann, M. Pulmonary toxicity of nanomaterials: A critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine 2014, 9, 2557–2585. [Google Scholar] [CrossRef]
- Sohaebuddin, S.K.; Thevenot, P.T.; Baker, D.; Eaton, J.W.; Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 2010, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Kroll, A.; Dierker, C.; Rommel, C.; Hahn, D.; Wohlleben, W.; Schulze-Isfort, C.; Göbbert, C.; Voetz, M.; Hardinghaus, F.; Schnekenburger, J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part. Fibre Toxicol. 2011, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.-S.; Duffin, R.; Bradley, M.; Megson, I.L.; MacNee, W.; Lee, J.K.; Jeong, J.; Donaldson, K. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part. Fibre Toxicol. 2013, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Corson, N.; Wade-Mercer, P.; Gelein, R.; Jiang, J.; Sahu, M.; Biswas, P.; Finkelstein, J.N.; Elder, A.; Oberdörster, G. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 2012, 297, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannerström, M.; Zou, J.; Toimela, T.; Pyykkö, I.; Heinonen, T. The applicability of conventional cytotoxicity assays to predict safety/toxicity of mesoporous silica nanoparticles, silver and gold nanoparticles and multi-walled carbon nanotubes. Toxicol. In Vitro 2016, 37, 113–120. [Google Scholar] [CrossRef]
- Seagrave, J.; McDonald, J.D.; Mauderly, J.L. In vitro versus in vivo exposure to combustion emissions. Exp. Toxicol. Pathol. 2005, 57, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Sayes, C.M.; Reed, K.L. Nanoscale and Fine Zinc Oxide Particles: Can In Vitro Assays Accurately Forecast Lung Hazards following Inhalation Exposures? Environ. Sci. Technol. 2009, 43, 7939–7945. [Google Scholar] [CrossRef]
- Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.A.; Inman, A.O.; Zhang, L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 2009, 234, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Tran, C.L. An introduction to the short-term toxicology of respirable industrial fibres. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2004, 553, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.; Fuhst, R.; Rittinghausen, S.; Creutzenberg, O.; Bellmann, B.; Koch, W.; Levsen, K. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel exhaust, carbon black and titanium dioxide. Inhal. Toxicol. 1995, 7, 23. [Google Scholar] [CrossRef]
- Driscoll, K.E.; Borm, P.J.A. Expert workshop on the hazards and risks of poorly soluble low toxicity particles. Inhal. Toxicol. 2020, 32, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.U.; Stefaniak, A.B.; Stojilovic, N.; Chase, G.G. Comparative dissolution of electrospun Al2O3 nanofibres in artificial human lung fluids. Environ. Sci. Nano 2015, 2, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Koltermann-Jülly, J.; Keller, J.G.; Vennemann, A.; Werle, K.; Müller, P.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Wohlleben, W. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: Grouping by biodissolution and transformation. NanoImpact 2018, 12, 29–41. [Google Scholar] [CrossRef]
- Keller, J.G.; Persson, M.; Müller, P.; Ma-Hock, L.; Werle, K.; Arts, J.; Landsiedel, R.; Wohlleben, W. Variation in dissolution behavior among different nanoforms and its implication for grouping approaches in inhalation toxicity. NanoImpact 2021, 23, 100341. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A.; Ziegler, T.L. The Toxicological Geochemistry of Earth Materials: An Overview of Processes and the Interdisciplinary Methods Used to Understand Them. Rev. Miner. Geochem. 2006, 64, 5–57. [Google Scholar] [CrossRef] [Green Version]
- Krystek, P.; Kettler, K.; van der Wagt, B.; de Jong, W.H. Exploring influences on the cellular uptake of medium-sized silver nanoparticles into THP-1 cells. Microchem. J. 2015, 120, 45–50. [Google Scholar] [CrossRef]
- Innes, E.; Yiu, H.H.P.; McLean, P.; Brown, W.; Boyles, M. Simulated biological fluids—A systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit. Rev. Toxicol. 2021, 51, 217–248. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Hellack, B.; Nickel, C.; Herrchen, M.; Hund-Rinke, K.; Kettler, K.; Riebeling, C.; Haase, A.; Funk, B.; Kühnel, D.; et al. The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale 2019, 11, 17637–17654. [Google Scholar] [CrossRef] [PubMed]
- Alexander, I.C.; Brown, R.C.; Jubb, G.A.; Pickering, P.; Hoskins, J.A. Durability of ceramic and novel man-made mineral fibers. Environ. Health Perspect. 1994, 102, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, V.R.; Jensen, S.L.; Guldberg, M.; Kamstrup, O. Effect of chemical composition of man-made vitreous fibers on the rate of dissolution in vitro at different pHs. Environ. Health Perspect. 1994, 102, 83–86. [Google Scholar] [CrossRef]
- Spitler, G.; Spitz, H.; Glasser, S.; Hoffman, M.K.; Bowen, J. In Vitro Dissolution of Uranium-contaminated Soil in Simulated Lung Fluid Containing a Pulmonary Surfactant. Health Phys. 2015, 108, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Searl, A.; Cullen, R.T. An enzymatic tissue digestion method for fibre biopersistence studies. Ann. Occup. Hyg. 1997, 41, 721–727. [Google Scholar] [CrossRef]
- Utembe, W.; Potgieter, K.; Stefaniak, A.B.; Gulumian, M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 2015, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Ansoborlo, E.; Hengé-Napoli, M.H.; Chazel, V.; Gibert, R.; Guilmette, R.A. Review and Critical Analysis of Available In Vitro Dissolution Tests. Health Phys. 1999, 77, 638–645. [Google Scholar] [CrossRef]
- Farrugia, C. Flow-through dissolution testing: A comparison with stirred beaker methods. Chronic Ill 2002, 6, 17–19. [Google Scholar]
- Braydich-Stolle, L.K.; Breitner, E.K.; Comfort, K.K.; Schlager, J.J.; Hussain, S.M. Dynamic Characteristics of Silver Nanoparticles in Physiological Fluids: Toxicological Implications. Langmuir 2014, 30, 15309–15316. [Google Scholar] [CrossRef]
- Keller, J.; Peijnenburg, W.; Werle, K.; Landsiedel, R.; Wohlleben, W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials 2020, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Murphy, F.; Dekkers, S.; Braakhuis, H.; Ma-Hock, L.; Johnston, H.; Janer, G.; di Cristo, L.; Sabella, S.; Jacobsen, N.R.; Oomen, A.G.; et al. An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NanoImpact 2021, 22, 100314. [Google Scholar] [CrossRef]
- Hesterberg, T.W.; Hart, G.A. Lung Biopersistence and In Vitro Dissolution Rate Predict the Pathogenic Potential of Synthetic Vitreous Fibers. Inhal. Toxicol. 2000, 12 (Suppl. 3), 91–97. [Google Scholar] [CrossRef]
- Boyles, M.S.P.; Brown, D.; Knox, J.; Horobin, M.; Miller, M.R.; Johnston, H.J.; Stone, V. Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools. Inhal. Toxicol. 2018, 30, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, D.G.; Chashchin, M.; Berlinger, B.; Fedorov, V.; Chashchin, V.; Thomassen, Y. Biological monitoring of welders’ exposure to chromium, molybdenum, tungsten and vanadium. J. Trace Elem. Med. Biol. 2017, 41, 99–106. [Google Scholar] [CrossRef]
- Gray, E.P.; Browning, C.L.; Wang, M.; Gion, K.D.; Chao, E.Y.; Koski, K.J.; Kane, A.B.; Hurt, R.H. Biodissolution and cellular response to MoO3 nanoribbons and a new framework for early hazard screening for 2D materials. Environ. Sci. Nano 2018, 5, 2545–2559. [Google Scholar] [CrossRef]
- Chazel, V.; Houpert, P.; Paquet, F.; Ansoborlo, E.; Hengé-Napoli, M.H. Experimental Determination of the Solubility of Industrial UF4 Particles. Radiat. Prot. Dosim. 2000, 92, 289–294. [Google Scholar] [CrossRef]
- Chazel, V.; Gerasimo, P.; Debouis, V.; Laroche, P.; Paquet, F. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank. Radiat. Prot. Dosim. 2003, 105, 163–166. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Guilmette, R.A.; Day, G.A.; Hoover, M.D.; Breysse, P.N.; Scripsick, R.C. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol. In Vitro 2005, 19, 123–134. [Google Scholar] [CrossRef]
- Heim, K.E.; Danzeisen, R.; Verougstraete, V.; Gaidou, F.; Brouwers, T.; Oller, A.R. Bioaccessibility of nickel and cobalt in synthetic gastric and lung fluids and its potential use in alloy classification. Regul. Toxicol. Pharmacol. 2020, 110, 104549. [Google Scholar] [CrossRef]
- Yu, S.-J.; Chao, J.-B.; Sun, J.; Yin, Y.-G.; Liu, J.-F.; Jiang, G.-B. Quantification of the Uptake of Silver Nanoparticles and Ions to HepG2 Cells. Environ. Sci. Technol. 2013, 47, 3268–3274. [Google Scholar] [CrossRef]
- Su, C.-K.; Sun, Y.-C. Considerations of inductively coupled plasma mass spectrometry techniques for characterizing the dissolution of metal-based nanomaterials in biological tissues. J. Anal. At. Spectrom. 2015, 30, 1689–1705. [Google Scholar] [CrossRef]
- Jiang, X.; Miclăuş, T.; Wang, L.; Foldbjerg, R.; Sutherland, D.; Autrup, H.; Chen, C.; Beer, C. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity. Nanotoxicology 2015, 9, 181–189. [Google Scholar] [CrossRef]
- Malysheva, A.; Ivask, A.; Doolette, C.L.; Voelcker, N.H.; Lombi, E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 2021, 16, 926–932. [Google Scholar] [CrossRef]
- Lehuede, P.; de Meringo, A.; Bernstein, D.M. Comparison of the chemical evolution of MMVF following inhalation exposure in rats and acellular in vitro dissolution. Inhal. Toxicol. 1997, 9, 495–523. [Google Scholar] [CrossRef]
- Luoto, K.; Holopainen, M.; Karppinen, K.; Perander, M.; Savolainen, K. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble’s saline solution: Influence of different media and chemical composition of the fibers. Environ. Health Perspect. 1994, 102 (Suppl. 5), 103–107. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Liu, X.; Hu, X.; Chen, Y.; Wang, H.; Lian, H.-Z. In vitro inhalation bioaccessibility procedures for lead in PM2.5 size fraction of soil assessed and optimized by in vivo-in vitro correlation. J. Hazard. Mater. 2020, 381, 121202. [Google Scholar] [CrossRef]
- Guldberg, M.; Jensen, S.L.; Knudsen, T.; Steenberg, T.; Kamstrup, O. High-Alumina Low-Silica HT Stone Wool Fibers: A Chemical Compositional Range with High Biosolubility. Regul. Toxicol. Pharmacol. 2002, 35, 217–226. [Google Scholar] [CrossRef]
- Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 2001, 109 (Suppl. 4), 547–551. [Google Scholar] [CrossRef] [Green Version]
- Ayres, J.G.; Borm, P.; Cassee, F.R.; Castranova, V.; Donaldson, K.; Ghio, A.; Harrison, R.M.; Hider, R.; Kelly, F.; Kooter, I.M.; et al. Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhal. Toxicol. 2008, 20, 75–99. [Google Scholar] [CrossRef]
- Hellack, B.; Nickel, C.; Albrecht, C.; Kuhlbusch, T.; Boland, S.; Baeza-Squiban, A.; Wohlleben, W.; Schins, R.P.F. Analytical methods to assess the oxidative potential of nanoparticles: A review. Environ. Sci. Nano 2017, 4, 1920–1934. [Google Scholar] [CrossRef]
- Møller, P.; Danielsen, P.H.; Karottki, D.G.; Jantzen, K.; Roursgaard, M.; Klingberg, H.; Jensen, D.M.; Vest Christophersen, D.; Hemmingsen, J.G.; Cao, Y.; et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat. Res./Rev. Mutat. Res. 2014, 762, 133–166. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Møller, P.; Jacobsen, N.R.; Folkmann, J.K.; Danielsen, P.H.; Mikkelsen, L.; Hemmingsen, J.G.; Vesterdal, L.K.; Forchhammer, L.; Wallin, H.; Loft, S. Role of oxidative damage in toxicity of particulates. Free Radic. Res. 2010, 44, 1–46. [Google Scholar] [CrossRef]
- Song, B.; Zhou, T.; Yang, W.; Liu, J.; Shao, L. Contribution of oxidative stress to TiO 2 nanoparticle-induced toxicity. Environ. Toxicol. Pharmacol. 2016, 48, 130–140. [Google Scholar] [CrossRef]
- Bahl, A.; Hellack, B.; Wiemann, M.; Giusti, A.; Werle, K.; Haase, A.; Wohlleben, W. Nanomaterial categorization by surface reactivity: A case study comparing 35 materials with four different test methods. NanoImpact 2020, 19, 100234. [Google Scholar] [CrossRef]
- Gandon, A.; Werle, K.; Neubauer, N.; Wohlleben, W. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol. J. Phys. Conf. Ser. 2017, 838, 012033. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Duffin, R.; Poland, C.; Daly, P.; Murphy, F.; Drost, E.; MacNee, W.; Stone, V.; Donaldson, K. Efficacy of Simple Short-Term In Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation. Environ. Health Perspect. 2009, 117, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.J.; Hsieh, S.F.; Organti, N.; Schmidt, D.; Bello, D. A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: Human blood serum. Toxicol. In Vitro 2008, 22, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Sauvain, J.-J.; Rossi, M.J.; Riediker, M. Comparison of Three Acellular Tests for Assessing the Oxidation Potential of Nanomaterials. Aerosol Sci. Technol. 2013, 47, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.-F.; Bello, D.; Schmidt, D.F.; Pal, A.K.; Stella, A.; Isaacs, J.A.; Rogers, E.J. Mapping the Biological Oxidative Damage of Engineered Nanomaterials. Small 2013, 9, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Achawi, S.; Feneon, B.; Pourchez, J.; Forest, V. Assessing biological oxidative damage induced by graphene-based materials: An asset for grouping approaches using the FRAS assay. Regul. Toxicol. Pharmacol. 2021, 127, 105067. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyles, M.; Murphy, F.; Mueller, W.; Wohlleben, W.; Jacobsen, N.R.; Braakhuis, H.; Giusti, A.; Stone, V. Development of a standard operating procedure for the DCFH2-DA acellular assessment of reactive oxygen species produced by nanomaterials. Toxicol. Mech. Methods 2022, 32, 439–452. [Google Scholar] [CrossRef]
- Pal, A.K.; Bello, D.; Budhlall, B.; Rogers, E.; Milton, D.K. Screening for Oxidative Stress Elicited by Engineered Nanomaterials: Evaluation of Acellular DCFH Assay. Dose-Response 2012, 10, 308–330. [Google Scholar] [CrossRef]
- Zhao, J.; Riediker, M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. J. Nanopart. Res. 2014, 16, 2493. [Google Scholar] [CrossRef] [Green Version]
- Seleci, D.A.; Tsiliki, G.; Werle, K.; Elam, D.A.; Okpowe, O.; Seidel, K.; Bi, X.; Westerhoff, P.; Innes, E.; Boyles, M.; et al. Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays. NanoImpact 2022, 26, 100390. [Google Scholar] [CrossRef]
- Janer, G.; Landsiedel, R.; Wohlleben, W. Rationale and decision rules behind the ECETOC NanoApp to support registration of sets of similar nanoforms within REACH. Nanotoxicology 2021, 15, 145–166. [Google Scholar] [CrossRef]
- Pal, A.K.; Hsieh, S.-F.; Khatri, M.; Isaacs, J.A.; Demokritou, P.; Gaines, P.; Schmidt, D.F.; Rogers, E.J.; Bello, D. Screening for oxidative damage by engineered nanomaterials: A comparative evaluation of FRAS and DCFH. J. Nanopart. Res. 2014, 16, 2167. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2014, 1840, 708–721. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.A.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J., II; Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Boyles, M.S.P.; Ranninger, C.; Reischl, R.; Rurik, M.; Tessadri, R.; Kohlbacher, O.; Duschl, A.; Huber, C.G. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part. Fibre Toxicol. 2016, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Hiura, T.S.; Li, N.; Kaplan, R.; Horwitz, M.; Seagrave, J.-C.; Nel, A.E. The Role of a Mitochondrial Pathway in the Induction of Apoptosis by Chemicals Extracted from Diesel Exhaust Particles. J. Immunol. 2000, 165, 2703–2711. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Korge, P.; Weiss, J.N.; Li, N.; Venkatesen, M.I.; Sioutas, C.; Nel, A. Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity. Environ. Health Perspect. 2004, 112, 1347–1358. [Google Scholar] [CrossRef]
- Čapek, J.; Roušar, T. Detection of Oxidative Stress Induced by Nanomaterials in Cells—The Roles of Reactive Oxygen Species and Glutathione. Molecules 2021, 26, 4710. [Google Scholar] [CrossRef]
- Rushton, E.K.; Jiang, J.; Leonard, S.S.; Eberly, S.; Castranova, V.; Biswas, P.; Elder, A.; Han, X.; Gelein, R.; Finkelstein, J.; et al. Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics. J. Toxicol. Environ. Health A 2010, 73, 445–461. [Google Scholar] [CrossRef]
- Lehman, S.E.; Morris, A.S.; Mueller, P.S.; Salem, A.K.; Grassian, V.H.; Larsen, S.C. Silica nanoparticle-generated ROS as a predictor of cellular toxicity: Mechanistic insights and safety by design. Environ. Sci. Nano 2016, 3, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Driessen, M.D.; Mues, S.; Vennemann, A.; Hellack, B.; Bannuscher, A.; Vimalakanthan, V.; Riebeling, C.; Ossig, R.; Wiemann, M.; Schnekenburger, J.; et al. Proteomic analysis of protein carbonylation: A useful tool to unravel nanoparticle toxicity mechanisms. Part. Fibre Toxicol. 2015, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Riebeling, C.; Wiemann, M.; Schnekenburger, J.; Kuhlbusch, T.A.J.; Wohlleben, W.; Luch, A.; Haase, A. A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Reuzel, P.G.J.; Bruijntjes, J.P.; Feron, V.J.; Woutersen, R.A. Subchronic inhalation toxicity of amorphous silicas and quartz dust in rats. Food Chem. Toxicol. 1991, 29, 341–354. [Google Scholar] [CrossRef]
- Muhle, H.; Kittel, B.; Ernst, H.; Mohr, U.; Mermelstein, R. Neoplastic lung lesions in rat after chronic exposure to crystalline silica. Scand. J. Work Environ. Health 1995, 21, 27–29. [Google Scholar]
- Brand, W.; Peters, R.J.B.; Braakhuis, H.M.; Maślankiewicz, L.; Oomen, A.G. Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology 2020, 14, 985–1007. [Google Scholar] [CrossRef]
- Elsabahy, M.; Wooley, K.L. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev. 2013, 42, 5552–5576. [Google Scholar] [CrossRef] [Green Version]
- Di Ianni, E.; Erdem, J.S.; Møller, P.; Sahlgren, N.M.; Poulsen, S.S.; Knudsen, K.B.; Zienolddiny, S.; Saber, A.T.; Wallin, H.; Vogel, U.; et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part. Fibre Toxicol. 2021, 18, 25. [Google Scholar] [CrossRef]
- Sun, B.; Wang, X.; Ji, Z.; Li, R.; Xia, T. NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small 2013, 9, 1595–1607. [Google Scholar] [CrossRef]
- Harkema, J.R.; Wagner, J.G. Pathology of the Respiratory System. In Toxicologic Pathology for Non-Pathologists; Humana: New York, NY, USA, 2019; pp. 311–354. [Google Scholar] [CrossRef]
- Li, Y.; Fujita, M.; Boraschi, D. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Front. Immunol. 2017, 8, 472. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; Germolec, D.R.; Weaver, J.L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 2009, 4, 411–414. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; Gremmer, E.R.; Bannuscher, A.; Drasler, B.; Keshavan, S.; Barbara Rothen-Rutishauser, B.B.; Verlohner, A.; Landsiedel, R.; Meldrum, K.; Doak, S.H.; et al. Transferability and reproducibility of exposed air-liquid interface co-culture lung models. NanoImpact, 2022; in preparation. [Google Scholar]
- Barosova, H.; Meldrum, K.; Karakocak, B.B.; Balog, S.; Doak, S.H.; Petri-Fink, A.; Clift, M.J.D.; Rothen-Rutishauser, B. Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicol. In Vitro 2021, 75, 105178. [Google Scholar] [CrossRef]
- Bessa, M.J.; Brandão, F.; Fokkens, P.; Cassee, F.R.; Salmatonidis, A.; Viana, M.; Vulpoi, A.; Simon, S.; Monfort, E.; Teixeira, J.P.; et al. Toxicity assessment of industrial engineered and airborne process-generated nanoparticles in a 3D human airway epithelial in vitro model. Nanotoxicology 2021, 15, 542–557. [Google Scholar] [CrossRef]
- Petersen, E.J.; Sharma, M.; Clippinger, A.J.; Gordon, J.; Katz, A.; Laux, P.; Leibrock, L.B.; Luch, A.; Matheson, J.; Stucki, A.O.; et al. Use of Cause-and-Effect Analysis to Optimize the Reliability of In Vitro Inhalation Toxicity Measurements Using an Air–Liquid Interface. Chem. Res. Toxicol. 2021, 34, 1370–1385. [Google Scholar] [CrossRef]
- Guo, C.; Buckley, A.; Marczylo, T.; Seiffert, J.; Römer, I.; Warren, J.; Hodgson, A.; Chung, K.F.; Gant, T.; Smith, R.; et al. The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation. Nanotoxicology 2018, 12, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, W.J.; Låg, M.; Holme, J.A.; Friede, B.; Gualtieri, M.; Kruszewski, M.; Schwarze, P.E.; Skuland, T.; Refsnes, M. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Part. Fibre Toxicol. 2012, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Svensson, C.R.; Ameer, S.S.; Ludvigsson, L.; Ali, N.; Alhamdow, A.; Messing, M.E.; Pagels, J.; Gudmundsson, A.; Bohgard, M.; Sanfins, E.; et al. Validation of an air–liquid interface toxicological set-up using Cu, Pd, and Ag well-characterized nanostructured aggregates and spheres. J. Nanopart. Res. 2016, 18, 86. [Google Scholar] [CrossRef] [Green Version]
- Endes, C.; Schmid, O.; Kinnear, C.; Mueller, S.; Camarero-Espinosa, S.; Vanhecke, D.; Foster, E.J.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part. Fibre Toxicol. 2014, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Hufnagel, M.; Neuberger, R.; Wall, J.; Link, M.; Friesen, A.; Hartwig, A. Impact of Differentiated Macrophage-Like Cells on the Transcriptional Toxicity Profile of CuO Nanoparticles in Co-Cultured Lung Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 5044. [Google Scholar] [CrossRef]
- Clift, M.J.D.; Endes, C.; Vanhecke, D.; Wick, P.; Gehr, P.; Schins, R.P.F.; Petri-Fink, A.; Rothen-Rutishauser, B. A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes. Toxicol. Sci. 2014, 137, 55–64. [Google Scholar] [CrossRef]
- Braakhuis, H.M.; He, R.; Vandebriel, R.J.; Gremmer, E.R.; Zwart, E.; Vermeulen, J.P.; Fokkens, P.; Boere, J.; Gosens, I.; Cassee, F.R. An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing. J. Vis. Exp. 2020, 159, e61210. [Google Scholar] [CrossRef]
- Herzog, F.; Clift, M.J.D.; Piccapietra, F.; Behra, R.; Schmid, O.; Petri-Fink, A.; Rothen-Rutishauser, B. Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part. Fibre Toxicol. 2013, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Braakhuis, H.M.; Giannakou, C.; Peijnenburg, W.J.G.M.; Vermeulen, J.; van Loveren, H.; Park, M.V.D.Z. Simplein vitromodels can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology 2016, 10, 770–779. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Ji, Z.; Sun, B.; Zhang, H.; Chang, C.H.; Lin, S.; Meng, H.; Liao, Y.-P.; Wang, M.; et al. Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano 2013, 7, 2352–2368. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xia, T.; Ntim, S.A.; Ji, Z.; Lin, S.; Meng, H.; Chung, C.-H.; George, S.; Zhang, H.; Wang, M.; et al. Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano 2011, 5, 9772–9787. [Google Scholar] [CrossRef] [Green Version]
- Diabaté, S.; Armand, L.; Murugadoss, S.; Dilger, M.; Fritsch-Decker, S.; Schlager, C.; Béal, D.; Arnal, M.-E.; Biola-Clier, M.; Ambrose, S.; et al. Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials 2020, 11, 65. [Google Scholar] [CrossRef]
- Loret, T.; Rogerieux, F.; Trouiller, B.; Braun, A.; Egles, C.; Lacroix, G. Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods. Part. Fibre Toxicol. 2018, 15, 25. [Google Scholar] [CrossRef]
- Lenz, A.-G.; Karg, E.; Brendel, E.; Hinze-Heyn, H.; Maier, K.L.; Eickelberg, O.; Stoeger, T.; Schmid, O. Inflammatory and Oxidative Stress Responses of an Alveolar Epithelial Cell Line to Airborne Zinc Oxide Nanoparticles at the Air-Liquid Interface: A Comparison with Conventional, Submerged Cell-Culture Conditions. BioMed Res. Int. 2013, 2013, 652632. [Google Scholar] [CrossRef] [Green Version]
- Loret, T.; Peyret, E.; Dubreuil, M.; Aguerre-Chariol, O.; Bressot, C.; le Bihan, O.; Amodeo, T.; Trouiller, B.; Braun, A.; Egles, C.; et al. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions. Part. Fibre Toxicol. 2016, 13, 58. [Google Scholar] [CrossRef] [Green Version]
- Herzog, F.; Loza, K.; Balog, S.; Clift, M.J.D.; Epple, M.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein J. Nanotechnol. 2014, 5, 1357–1370. [Google Scholar] [CrossRef] [Green Version]
- Medina-Reyes, E.I.; Delgado-Buenrostro, N.L.; Leseman, D.L.; Déciga-Alcaraz, A.; He, R.; Gremmer, E.R.; Fokkens, P.H.B.; Flores-Flores, J.O.; Cassee, F.R.; Chirino, Y.I. Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures. Toxicol. In Vitro 2020, 65, 104798. [Google Scholar] [CrossRef]
- Panas, A.; Comouth, A.; Saathoff, H.; Leisner, T.; Al-Rawi, M.; Simon, M.; Seemann, G.; Dössel, O.; Mülhopt, S.; Paur, H.-R.; et al. Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein J. Nanotechnol. 2014, 5, 1590–1602. [Google Scholar] [CrossRef] [Green Version]
- Öhlinger, K.; Kolesnik, T.; Meindl, C.; Gallé, B.; Absenger-Novak, M.; Kolb-Lenz, D.; Fröhlich, E. Air-liquid interface culture changes surface properties of A549 cells. Toxicol. In Vitro 2019, 60, 369–382. [Google Scholar] [CrossRef]
- Upadhyay, S.; Palmberg, L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol. Sci. 2018, 164, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Bannuscher, A.; Schmid, O.; Drasler, B.; Rohrbasser, A.; Braakhuis, H.M.; Meldrum, K.; Zwart, E.P.; Gremmer, E.R.; Birk, B.; Rissel, M.; et al. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials. NanoImpact 2022, 28, 100439. [Google Scholar] [CrossRef]
- Doak, S.H.; Clift, M.J.; Costa, A.; Delmaar, C.; Gosens, I.; Halappanavar, S.; Kelly, S.; Pejinenburg, W.J.; Rothen-Rutishauser, B.; Schins, R.P. The Road to Achieving the European Commission’s Chemicals Strategy for Nanomaterial Sustainability—A PATROLS Perspective on New Approach Methodologies. Small 2022, 18, 2200231. [Google Scholar] [CrossRef]
- Catalán, J.; Stockmann-Juvala, H.; Norppa, H. A theoretical approach for a weighted assessment of the mutagenic potential of nanomaterials. Nanotoxicology 2017, 11, 964–977. [Google Scholar] [CrossRef]
- Kohl, Y.; Rundén-Pran, E.; Mariussen, E.; Hesler, M.; El Yamani, N.; Longhin, E.M.; Dusinska, M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment—A Review. Nanomaterials 2020, 10, 1911. [Google Scholar] [CrossRef]
- Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.-J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; et al. Mode of action-based risk assessment of genotoxic carcinogens. Arch. Toxicol. 2020, 94, 1787–1877. [Google Scholar] [CrossRef]
- Steiblen, G.; van Benthem, J.; Johnson, G. Strategies in genotoxicology: Acceptance of innovative scientific methods in a regulatory context and from an industrial perspective. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2020, 853, 503171. [Google Scholar] [CrossRef]
- Catalán, J.; Norppa, H. Safety Aspects of Bio-Based Nanomaterials. Bioengineering 2017, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Stone, V.; Pozzi-Mucelli, S.; Tran, L.; Aschberger, K.; Sabella, S.; Vogel, U.; Poland, C.; Balharry, D.; Fernandes, T.; Gottardo, S.; et al. ITS-NANO—Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part. Fibre Toxicol. 2014, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Dusinska, M.; Boland, S.; Saunders, M.; Juillerat-Jeanneret, L.; Tran, L.; Pojana, G.; Marcomini, A.; Volkovova, K.; Tulinska, J.; Knudsen, L.E.; et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology 2015, 9, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, D.; Reeve, L.; Gatehouse, D.; Vanparys, P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 721, 27–73. [Google Scholar] [CrossRef]
- Kirkland, D.; Aardema, M.; Henderson, L.; Müller, L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2005, 584, 1–256. [Google Scholar] [CrossRef]
- Doak, S.H.; Manshian, B.; Jenkins, G.J.S.; Singh, N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 745, 104–111. [Google Scholar] [CrossRef]
- Clift, M.J.D.; Raemy, D.O.; Endes, C.; Ali, Z.; Lehmann, A.D.; Brandenberger, C.; Petri-Fink, A.; Wick, P.; Parak, W.J.; Gehr, P.; et al. Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology 2013, 7, 1373–1385. [Google Scholar] [CrossRef]
- George, J.M.; Magogotya, M.; Vetten, M.A.; Buys, A.V.; Gulumian, M. From the cover: An investigation of the genotoxicity and interference of gold nanoparticles in commonly used in vitro mutagenicity and genotoxicity assays. Toxicol. Sci. 2017, 156, 149–166. [Google Scholar]
- Landsiedel, R.; Kapp, M.D.; Schulz, M.; Wiench, K.; Oesch, F. Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations—Many questions, some answers. Mutat. Res./Rev. Mutat. Res. 2009, 681, 241–258. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef]
- Pfuhler, S.; Elespuru, R.; Aardema, M.J.; Doak, S.H.; Maria Donner, E.; Honma, M. Genotoxicity of nanomaterials: Refining strategies and tests for hazard identification. Environ. Mol. Mutagen. 2013, 54, 229. [Google Scholar] [CrossRef]
- Elespuru, R.; Pfuhler, S.; Aardema, M.J.; Chen, T.; Doak, S.H.; Doherty, A.; Farabaugh, C.S.; Kenny, J.; Manjanatha, M.; Mahadevan, B.; et al. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol. Sci. 2018, 164, 391–416. [Google Scholar] [CrossRef]
- Elespuru, R.K.; Doak, S.H.; Collins, A.R.; Dusinska, M.; Pfuhler, S.; Manjanatha, M.; Cardoso, R.; Chen, C.L. Common Considerations for Genotoxicity Assessment of Nanomaterials. Front. Toxicol. 2022, 4, 859122. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Morley, A.A. Cytokinesis-block micronucleus method in human lymphocytes: Effect of in vivo ageing and low dose X-irradiation. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1986, 161, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Doak, S.; Griffiths, S.; Manshian, B.; Singh, N.; Williams, P.; Brown, A.; Jenkins, G. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 2009, 24, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment; Appendix R7-1 for Nanomaterials Applicable to Chapter R7a Endpoint Specific Guidance ECHA-21-H-04-EN; ECHA: Helsinki, Finland, 2021. [Google Scholar]
- Dusinska, M.; Mariussen, E.; Rundén-Pran, E.; Hudecova, A.M.; Elje, E.; Kazimirova, A.; El Yamani, N.; Dommershausen, N.; Tharmann, J.; Fieblinger, D.; et al. In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. In Nanotoxicity; Methods in Molecular Biology; Springer: Cham, Switzerland, 2019; Volume 1894, pp. 83–122. [Google Scholar] [CrossRef]
- Wills, J.W.; Hondow, N.; Thomas, A.D.; Chapman, K.E.; Fish, D.; Maffeis, T.G.; Penny, M.W.; Brown, R.A.; Jenkins, G.J.S.; Brown, A.P.; et al. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part. Fibre Toxicol. 2016, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Conway, G.E.; Shah, U.-K.; Llewellyn, S.; Cervena, T.; Evans, S.J.; Al Ali, A.S.; Jenkins, G.J.; Clift, M.J.D.; Doak, S.H. Adaptation of the in vitro micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis 2020, 35, 319–330. [Google Scholar] [CrossRef]
- ANSES. Nanogenotox Final Report—Facilitating the Safety Evaluation of Manufactured Nanomaterials by Characterising Their Potential Genotoxic Hazard; ANSES: Buenos Aires, Argentina, 2013. [Google Scholar]
- Louro, H.; Pinhão, M.; Santos, J.; Tavares, A.; Vital, N.; Silva, M.J. Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicol. Lett. 2016, 262, 123–134. [Google Scholar] [CrossRef]
- Evans, S.J.; Clift, M.J.D.; Singh, N.; Wills, J.W.; Hondow, N.; Wilkinson, T.S.; Burgum, M.J.; Brown, A.P.; Jenkins, G.J.; Doak, S.H. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part. Fibre Toxicol. 2019, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Burgum, M.J.; Clift, M.J.D.; Evans, S.J.; Hondow, N.; Tarat, A.; Jenkins, G.J.; Doak, S.H. Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. J. Nanobiotechnol. 2021, 19, 24. [Google Scholar] [CrossRef]
- SCOEL. Methodology for Derivation of Occupational Exposure Limits of Chemical Agents; European Commission, Ed.; SCOEL: Brussels, Belgium, 2017. [Google Scholar]
- Decordier, I.; Papine, A.; Loock, K.V.; Plas, G.; Soussaline, F.; Kirsch-Volders, M. Automated image analysis of micronuclei by IMSTAR for biomonitoring. Mutagenesis 2011, 26, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Nüsse, M.; Kramer, J. Flow cytometric analysis of micronuclei found in cells after irradiation. Cytometry 1984, 5, 20–25. [Google Scholar] [CrossRef]
- Nüsse, M.; Marx, K. Flow cytometric analysis of micronuclei in cell cultures and human lymphocytes: Advantages and disadvantages. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1997, 392, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Nüsse, M.; Recknagel, S.; Beisker, W. Micronuclei induced by 2-chlorobenzylidene malonitrile contain single chromosomes as demonstrated by the combined use of flow cytometry and immunofluorescent staining with anti-kinetochore antibodies. Mutagenesis 1992, 7, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Franz, P.; Bürkle, A.; Wick, P.; Hirsch, C. Exploring Flow Cytometry-Based Micronucleus Scoring for Reliable Nanomaterial Genotoxicity Assessment. Chem. Res. Toxicol. 2020, 33, 2538–2549. [Google Scholar] [CrossRef]
- Azqueta, A.; Gutzkow, K.B.; Priestley, C.C.; Meier, S.; Walker, J.S.; Brunborg, G.; Collins, A.R. A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol. In Vitro 2013, 27, 768–773. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, A.; Rubio, L.; Vila, L.; Xamena, N.; Velázquez, A.; Marcos, R.; Hernández, A. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. Nanomaterials 2019, 9, 1385. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.C.; Wright, C.W.; Ibuki, Y.; Moreno-Villanueva, M.; Karlsson, H.L.; Hendriks, G.; Sims, C.M.; Singh, N.; Doak, S.H. Emerging Metrology for High-Throughput Nanomaterial Genotoxicology Mutagenesis Advance Access. Mutagenesis 2017, 32, 215. [Google Scholar] [CrossRef] [Green Version]
- Elje, E.; Mariussen, E.; Moriones, O.H.; Bastús, N.G.; Puntes, V.; Kohl, Y.; Dusinska, M.; Rundén-Pran, E. Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials 2020, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Garraus, A.; Azqueta, A.; Vettorazzi, A.; de Cerain, A.L. Genotoxicity of Silver Nanoparticles. Nanomaterials 2020, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Warheit, D.B.; Donner, E.M. Rationale of genotoxicity testing of nanomaterials: Regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology 2010, 4, 409–413. [Google Scholar] [CrossRef]
- Pfuhler, S.; van Benthem, J.; Curren, R.; Doak, S.H.; Dusinska, M.; Hayashi, M.; Heflich, R.H.; Kidd, D.; Kirkland, D.; Luan, Y.; et al. Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT). Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2020, 850–851, 503135. [Google Scholar] [CrossRef]
- Evans, S.J.; Clift, M.J.; Singh, N.; de Oliveira Mallia, J.; Burgum, M.; Wills, J.W.; Wilkinson, T.S.; Jenkins, G.J.; Doak, S.H. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 2017, 32, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Ianni, E.; Jacobsen, N.R.; Vogel, U.; Møller, P. Predicting nanomaterials pulmonary toxicity in animals by cell culture models: Achievements and perspectives. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1794. [Google Scholar] [CrossRef]
- Clewell, R.A.; McMullen, P.D.; Adeleye, Y.; Carmichael, P.L.; Andersen, M.E. Pathway based toxicology and fit-for-purpose assays. In Validation of Alternative Methods for Toxicity Testing; Springer: Cham, Switzerland, 2016; pp. 205–230. [Google Scholar]
- Nymark, P.; Bakker, M.; Dekkers, S.; Franken, R.; Fransman, W.; García-Bilbao, A.; Greco, D.; Gulumian, M.; Hadrup, N.; Halappanavar, S.; et al. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small 2020, 16, e1904749. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment; OECD Environment, Health and Safety Publications Series on Testing and Assessment; OECD: Paris, France, 2015. [Google Scholar]
- Clift, M.J.D.; Jenkins, G.J.S.; Doak, S.H. An Alternative Perspective towards Reducing the Risk of Engineered Nanomaterials to Human Health. Small 2020, 16, e2002002. [Google Scholar] [CrossRef] [PubMed]
- Van der Zalm, A.J.; Barroso, J.; Browne, P.; Casey, W.; Gordon, J.; Henry, T.R.; Kleinstreuer, N.C.; Lowit, A.B.; Perron, M.; Clippinger, A.J. A framework for establishing scientific confidence in new approach methodologies. Arch. Toxicol. 2022, 96, 2865–2879. [Google Scholar] [CrossRef]
- European Commission. Pathway to a Healthy Planet for All. EU Action Plan: ’Towards Zero Pollution for Air, Water and Soil’—Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Napierska, D.; Thomassen, L.C.J.; Lison, D.; Martens, J.A.; Hoet, P.H. The nanosilica hazard: Another variable entity. Part. Fibre Toxicol. 2010, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- IARC. Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 11–465. [Google Scholar]
- Höck, J.; Behra, R.; Bergamin, L.; Bourqui-Pittet, M.; Bosshard, C.; Epprecht, T.; Furrer, V.; Frey, S.; Gautschi, M.; Hofmann, H.; et al. Guidelines on the Precautionary Matrix for Synthetic Nanomaterials; Federal Office of Public Health: Bern, Switzerland, 2018. [Google Scholar]
- Pavlicek, A.; Part, F.; Gressler, S.; Rose, G.; Gazsó, A.; Ehmoser, E.-K.; Huber-Humer, M. Testing the Applicability of the Safe-by-Design Concept: A Theoretical Case Study Using Polymer Nanoclay Composites for Coffee Capsules. Sustainability 2021, 13, 13951. [Google Scholar] [CrossRef]
- OECD. Testing Programme of Manufactured Nanomaterials. Available online: https://www.oecd.org/chemicalsafety/nanosafety/testing-programme-manufactured-nanomaterials.htm (accessed on 14 November 2022).
- NanoSafetyCluster. The Malta Initiative. Available online: https://www.nanosafetycluster.eu/international-cooperation/the-malta-initiative/ (accessed on 14 November 2022).
- NanoHarmony. Available online: https://nanoharmony.eu/ (accessed on 14 November 2022).
- OECD. Nanomet. Available online: https://www.oecd.org/chemicalsafety/nanomet/ (accessed on 14 November 2022).
- Gov4Nano. Available online: https://www.gov4nano.eu/ (accessed on 14 November 2022).
- EFSA; Andersson, N.; Arena, M.; Auteri, D.; Barmaz, S.; Grignard, E.; Kienzler, A.; Lepper, P.; Lostia, A.M.; Munn, S. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018, 16, e05311. [Google Scholar]
- Shen, F.; Li, D.; Guo, J.; Chen, J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Res. 2022, 223, 118960. [Google Scholar] [CrossRef]
- Priyam, A.; Singh, P.P.; Gehlout, S. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Front. Endocrinol. 2018, 9, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Performance Criteria | Mitochondrial Activity (MTT, MTS, XTT, WST-1, Alamar Blue) | Cell Membrane Integrity (LDH) | Cell Membrane Integrity Staining (Trypan Blue, Propidium Iodide, Annexin V) | Lysosomal Integrity (Neutral Red Uptake) | Caspase 3/7 Assay |
---|---|---|---|---|---|
Simplicity and cost | Easy and cost-effective, commercial kits available. | Easy and cost-effective, commercial kits available. | Microscopic evaluation is time-consuming. Using flow cytometry increases time efficiency. | Easy and cost-effective, commercial kits available. | Easy and cost-effective, commercial kits available. |
Predictivity (Sensitivity and Specificity) | Depends on the mechanism of toxicity of the particle, and the cell type used [110]. Macrophages seem more sensitive [114,117]. Assay better equipped to detect cytotoxicity of ion-shedding NMs [100]. Possibly suitable for making accurate rankings in toxicity [114]. | Depends on the mechanism of toxicity of the particle, and the cell type used. LDH results have been shown to correlate with in vivo results for ion shedding NMs [112] as well as poorly soluble NMs [113]. | Not assessed for NMs specifically. | Not assessed for NMs specifically | Not assessed for NMs specifically. |
Robustness | For MTS assay, decent robustness but depending on cell type used [107], and only when interferences are correctly avoided [100,108]. More elaborate SOPs and harmonization between labs enhance assay robustness [52,102]. | Similar robustness as MTS assay [108]. | Not assessed for NMs specifically. | Not assessed for NMs specifically. | One study showed high inter-laboratory variability [100]. |
Compatibility | Many NMs interfere with the substrate, the product, or the optical readout. Can be overcome by washing cells before incubation with reagent, and centrifugation to get rid of NMs [100,108]. | Many NMs interfere with the enzyme, the reagent, or the optical readout. Can be overcome via centrifugation. Washing not possible as LDH is measured in supernatant. | NMs may interfere with the dye. | NMs may interfere with the dye. | NMs may interfere with the dye or the readout. |
Readiness | ISO protocol for MTS assay. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. |
Acellular Assays | Cellular Assays | ||
---|---|---|---|
Performance Criteria | Static Dissolution (e.g., OECD Series on Testing and Assessment No. 29) | Flow-through/Dynamic Dissolution | Cellular In Vitro Dissolution |
Simplicity and cost | This system is the simplest and could be conducted by commercial laboratories without extensive investment in equipment. | Requires much greater effort with regards to setup, and also requires a large volume of fluid. | The basic principle of this method is simple and can be performed cheaply. Would be considered high throughput but as cellular will typically incur higher costs than acellular. |
Predictivity (Sensitivity and Specificity) | Static dissolution studies have been found to correlate with in vivo results in some instances [143,146,151], but in others poor correlation is observed [137,144,146,152,153]. Losses in sensitivity may arise due to any sample handling (e.g., acidifying the sample, filtration) or saturation of ions. For highly soluble materials, dissolution may continue during centrifugation steps, resulting in greater values of dissolution. | Good correlation observed between flow-through system using a specific simulant fluid (modified Gamble’s) and intratracheal instillation in vivo [154], and for some particles dynamic dissolution in phagolysosomal simulate fluid (PSF) was a good predictor for short term inhalation study in rats [123] and intratracheal instillation in rats [137]. Losses in sensitivity may arise due to any sample handling (e.g., acidifying the sample). Additional concerns about losses in the system due to filtration. | Results do appear to correlate well with in vivo in some instances (e.g., fast dissolution of Ag NMs in vivo [155] and in vitro [149]). Study by Koltermann-Jülly et al. (2018) found very low levels of dissolution in macrophages compared with the abiotic flow-through system and clearance in vivo [123]. Sensitivity relies on the capability of analysing released material. Additional concerns may arise from complexing of ions to biomolecules. |
Compatibility | The basic setup is compatible with many materials. Issues may arise with hydrophobic materials and with any material whereby sensitivity cannot be achieved for further analysis due to interference with components in the biofluid mixture (e.g., Ag NMs). | The basic setup is compatible with many materials. Issues may arise with any material whereby sensitivity cannot be achieved for further analysis due to interference with components in the biofluid mixture or membranes used (e.g., Ag NMs). | Most common analytical technique used is ICP-MS, therefore this methodology is the most compatible with metals. Carbon-based NMs such as CNT have used analytical techniques such as UV-Vis, Raman spectroscopy, and EM, however the sensitivity of these techniques is likely to be far less. |
Robustness | Large variability between different biofluids. | Can result in false positives and false negatives due to issues with the filtering system (i.e., due to NMs passing through pores or causing blockages in filters). | No evidence of inter-laboratory comparisons. Issues may arise due to inclusion of particles on the surface of the cell rather than internalised particles only. |
Readiness | OECD protocol but specifically for environmental studies. Various fluid compositions available. | ISO protocol outlining basic methodology. TRL identified as high/medium for metals and medium/low for organic materials (e.g., CNT) [124]. | Validated assays available but no standardized method. |
Performance Criteria | FRAS | ESR/EPR | DCFH Acellular | Haemolysis Assay |
---|---|---|---|---|
Simplicity and cost | Very simple but needs large amounts of NM. | Very simple, yet might be difficult to find lab with specialized ESR/EPR equipment. | Very simple and only requires a fluorescence reader. | Very simple and only requires absorbance reader and whole blood. |
Predictivity (Sensitivity and Specificity) | The assay is able to detect NMs’ reactivity at low concentrations and in a dose-dependent manner with higher sensitivity compared to DCFH assay [163]. Could distinguish between CNT types [175]. Prediction accuracy reported: 50% [162]. | Depending on spin trap used. Aids to identify specific ROS types, which could be useful for SbD interventions [176]. Prediction accuracies reported: 69% [164] and 50% [162]. Correlated well with in vitro cytotoxicity and protein carbonylation [183,184]. | Lacks sensitivity as compared to FRAS and ESR/EPR [163,171,175]. However, protocol adaptations [172] show ameliorated sensitivity. Prediction accuracies reported: 77% [164]. | Is thought to be able to detect OP of both surface reactive as well as ion-shedding NMs [112]. Showed very high prediction accuracy (92%) in one study [164]. |
Compatibility | Good compatibility with a wide range of NMs. Optical interferences are largely avoided using a centrifugation step but have been reported [173]. Adapted method suggested for graphene-based materials [168]. | Good compatibility with a wide range of NMs [162]. No interferences reported. | High background signals resulted from dye auto-oxidation [171]. NM interferences reported [162,166,184]. Adapted DCFH protocol reduces interferences [172]. | No interferences reported, yet might be expected due to absorbance readout. |
Robustness | No interlaboratory study performed. Found to be reproducible and reliable within the same lab [163,165] | Not assessed for NMs specifically. | Previously lacked robustness [175]. Interlaboratory round robin tests in GRACIOUS project showed satisfactory reproducibility for positive control NMs using optimized SOP [170]. | Not assessed for NMs specifically. |
Readiness | No NM-specific standardized protocol available. Gandon et al. (2017) protocol available [163]. | ISO protocol available (ISO 18827:2017) | No NM-specific standardized protocol available. Boyles et al. (2022) protocol available [170]. | No NM-specific standardized protocol available. |
Submerged Cell Models | ALI Cell Models | |||
---|---|---|---|---|
Performance Criteria | Submerged Cytokine Release Mono-Culture | Submerged Cytokine Release Co-Culture | ALI Cytokine Release Mono-Cultures | ALI Cytokine Release Co-Cultures |
Simplicity and cost | Simple and cost effective. | Simple and cost effective, however creating a co-culture requires more effort and experience than a mono-culture. | Requires specialized exposure equipment and a certain level of expertise. | Requires specialized exposure equipment and a certain level of expertise; creating a co-culture requires more effort and experience than a mono-culture. |
Predictivity (Sensitivity and Specificity) | Good correlation with in vivo found [190]. Found to be more sensitive than ALI in several studies [214,216]. Accurate ranking found [208,209]. | Combination of immune cell and epithelial cell more predictive than epithelial cell alone [94]. Accurate ranking found [213]. | Generally good for primary cells. Lower predictivity of epithelial cell lines. ALI exposures found more sensitive than submerged in several studies [210,211,212]. | Co-cultures perform better than two cell types separately [94]. BMDL of this model comes closer to the in vivo BMDL compared to submerged [211]. |
Robustness | Large inter-laboratory variability for THP-1 cells [100,108], no inter-laboratory data on other cell types. | Not assessed for NMs specifically. | Low reproducibility but similar trends between labs [195]. Low reproducibility improved after protocol optimizations [196]. | Low reproducibility but similar trends between labs [195]. |
Compatibility | NMs may interfere with ELISA [99,118]. | NMs may interfere with ELISA [99,118]. | Compatible with a wide range of materials, including hydrophobic and low-density NMs. However, NMs may interfere with ELISA [99,118]. | Compatible with a wide range of materials, as exposures do not necessarily require a dispersion. However, NMs may interfere with ELISA. Might be more suitable for NMs released form NEPs. |
Readiness | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. |
Simple Cell Models | More Complex Cell Models | |||
---|---|---|---|---|
Performance Criteria | Gene Mutations in Cell Lines (OECD TGs 476 and 490) | Chromosome Damage in Cell Lines (OECD TGs 487 MN Assay) | Gene Mutations in Advanced Models | Chromosome Damage in Advanced Models (OECD TG 487) |
Simplicity and cost | Time consuming, requiring long culture times (e.g., 10–14 days before counting colony formation). Relatively cheap. | Simple and relatively cheap. Analyses can be sped up using automatic image analysis systems and flow-cytometry. | Not used up to now, would necessitate 3D model dissociation before cell plating, i.e., simplicity reduced as compared to simple models. | Relatively simple and cheap for advanced models. Would be more time consuming and expensive than 2D models [260]. |
Predictivity (Sensitivity and Specificity) | Conventional chemicals: adequate (62.9%) [224,229]. NMs: no conclusions can be reached [236,259]. | Conventional chemicals: adequate (67.8%) [224,229] NMs: no conclusions can be reached [236,259]. | Not used up to now, no conclusion can be reached. | Co-culture systems may allow the evaluation of the involved genotoxicity mechanisms of action [246,247]. They may be more predictive of an in vivo-like response [260]. 3D models do not seem to be appropriate for applying this assay due to the lack of cell proliferation [242,243]. When the 3D model involves proliferating cells, it is more sensitive than 2D models, due to higher metabolic activity [260]. |
Robustness | No inter-laboratory comparisons available for NMs. Ongoing comparisons within the EU H2020 RiskGone project. | Relatively reproducible results in some cases, but material- and cell line-specific [244]. Future inter-laboratory comparisons under the OECD project 4.95. | Not used up to now, no conclusion can be reached. | Not enough studies available yet to allow reaching conclusions. |
Compatibility | Too low number of studies to reach conclusions [236]. | Suitable for different NMs (no interferences reported). No information about adequacy for complex materials. | No conclusion can be reached. Still, for NMs could prove unsuitable since only the cells at the periphery of the spheroid/organoid would be exposed to NMs. | Suitable for different NMs (no interferences reported). No information about adequacy for complex materials. |
Readiness | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. | No NM-specific standardized protocol available. |
What We Know for SbD Hazard Testing | What We Need for SbD Hazard Testing | ||
---|---|---|---|
NM treatment | Dispersion protocols | -Sonication can destroy intrinsic NM properties that might be part of its safer design. -Sonication can induce underestimation of toxicity by reducing the length of CNTs. -Sonication can enhance dissolution and release of (toxic) ions. -Sonication leads to a lower state of agglomeration. | -Consensus around dispersion protocols. -Dispersion guidance which covers all relevant exposure conditions and takes into account SbD interventions. |
Experimental design | -Testing NMs with serum results in lower in vitro toxicity. -Calculation of the dose delivered to the cells can have impact on toxicity ranking and is therefore also required for SbD hazard testing. | -Consensus and guidance for experimental design in the context of SbD. | |
Compatibility and LC | -Humans are not only exposed to pristine NMs, but also to NEPs, aged NMs, and NMs released during the LC. -Testing NMs released from NEPs may pose challenges in terms of feasibility and compatibility -Compatibility of novel NMs with currently available in vitro assays unknown. | -Guidance on how to approach testing NMs with unknown compatibility. -More research towards determining whether testing pristine NMs is sufficient for SbD hazard testing. | |
Assay protocols | Cytotoxicity | -More elaborate SOPs enhance robustness. -Many NMs interfere with cytotoxicity assays, which should not be overlooked. -In vivo effect of ion shedding NMs is sufficiently accurately predicted. -Measuring cytotoxicity is useful for identifying hazard warnings. | -Further standardization and validation of cytotoxicity assays -Thresholds for cytotoxicity in the context of SbD -More focus on assays that do not pose interference issues. -To confirm predictivity of cytotoxicity assays |
Dissolution | -Dissolution rate may infer bio-persistency, which is important information for SbD hazard testing. -Predictivity largely depends on readout method as well as biological fluid choice. -Static acellular dissolution seems to be the most appropriate method for SbD hazard testing, especially as they are rather simple, however some studies indicate otherwise. | -To confirm that measuring static acellular dissolution is indeed sufficiently predictive for SbD hazard testing. -Meaningful thresholds for dissolution rates that allow for detection of differences that will lead to meaningful SbD decisions and interventions. | |
Oxidative Potential | -Acellular assays might be predictive enough for SbD hazard testing. -In vivo effects of ion-shedding NMs is sufficiently accurately predicted. -There are indications that the haemolysis assay can accurately predict effects of surface-reactive NMs. -FRAS and ESR assays are more sensitive than DCFH. -FRAS assay can provide accurate ranking. | -To confirm that measuring acellular OP is predictive enough for SbD testing. -Meaningful thresholds for OP in the context of SbD. | |
Inflammation | -The use of a type of immune cell is crucial (using only epithelial cells is not sufficient). -Primary cell models have better predictivity, but (immune) cell lines may suffice for SbD hazard testing. -Co-cultures seem to perform better than mono-cultures. -More elaborate SOPs enhance robustness. | -More work needed to develop in vitro models that can predict chronic inflammation. -Thresholds for in vitro inflammation in the context of SbD. -To confirm that submerged mono-cultures of macrophage cell lines are predictive enough. | |
Genotoxicity | -Prediction accuracies very well established for soluble chemicals, but not for NMs. -It is important that the cell model of choice is capable of NM uptake. -The absence of NM positive controls makes determination of prediction accuracy challenging. | -To determine prediction accuracies of assays for NM specifically. -Round robin initiatives to test robustness of assays. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruijter, N.; Soeteman-Hernández, L.G.; Carrière, M.; Boyles, M.; McLean, P.; Catalán, J.; Katsumiti, A.; Cabellos, J.; Delpivo, C.; Sánchez Jiménez, A.; et al. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. Nanomaterials 2023, 13, 472. https://doi.org/10.3390/nano13030472
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, et al. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. Nanomaterials. 2023; 13(3):472. https://doi.org/10.3390/nano13030472
Chicago/Turabian StyleRuijter, Nienke, Lya G. Soeteman-Hernández, Marie Carrière, Matthew Boyles, Polly McLean, Julia Catalán, Alberto Katsumiti, Joan Cabellos, Camilla Delpivo, Araceli Sánchez Jiménez, and et al. 2023. "The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design" Nanomaterials 13, no. 3: 472. https://doi.org/10.3390/nano13030472
APA StyleRuijter, N., Soeteman-Hernández, L. G., Carrière, M., Boyles, M., McLean, P., Catalán, J., Katsumiti, A., Cabellos, J., Delpivo, C., Sánchez Jiménez, A., Candalija, A., Rodríguez-Llopis, I., Vázquez-Campos, S., Cassee, F. R., & Braakhuis, H. (2023). The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. Nanomaterials, 13(3), 472. https://doi.org/10.3390/nano13030472