Engineered g-C3N5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation
Abstract
:1. Introduction
2. Synthesis Strategies of Pristine g-C3N5
2.1. g-C3N5 Containing One-Triazole and Two-Triazine
2.1.1. The Hard Template Approach
2.1.2. The Template-Free Approach
2.2. g-C3N5 with Terminal Triazole
2.2.1. The Method Using the KIT-6 Template
2.2.2. The Method Using the KBr Template
2.3. g-C3N5 Consisted of Heptazine Units Bridged by Azo
2.3.1. Theoretical Design
2.3.2. Experimental Fabrication
3. Functional Engineering of g-C3N5
3.1. Defect Engineering
3.1.1. Doping Design
3.1.2. Vacancy Engineering
3.2. g-C3N5-Based Heterojunctions
3.2.1. Type-I Heterojunction
3.2.2. Type-II Heterojunction
3.2.3. Z-Scheme Photocatalyst
3.2.4. S-Scheme Heterojunction
3.2.5. Schottky Junction
4. Environmental and Energy Applications
4.1. H2 Evolution Reaction (HER)
4.2. CO2 Reduction Reaction (CO2RR)
4.3. Nitrogen Reduction Reaction (NRR)
4.4. NO Removal
4.5. Pollutant Degradation
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasija, V.; Nguyen, V.-H.; Kumar, A.; Raizada, P.; Krishnan, V.; Khan, A.A.P.; Singh, P.; Lichtfouse, E.; Wang, C.; Thi Huong, P. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. J. Hazard. Mater. 2021, 413, 125324. [Google Scholar] [CrossRef] [PubMed]
- Behera, P.; Subudhi, S.; Tripathy, S.P.; Parida, K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord. Chem. Rev. 2022, 456, 214392. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Arif, N.; Jiang, W.-C.; Zeng, Y.-J. 2D material based heterostructures for solar light driven photocatalytic H2 production. Mater. Adv. 2022, 3, 3389–3417. [Google Scholar] [CrossRef]
- Lakhi, K.S.; Park, D.H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J.H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, Y.; Sun, J.; Li, Z.; Ping, J.; Sun, X. Recent Advances in g-C3N4-Based Photocatalysts for Pollutant Degradation and Bacterial Disinfection: Design Strategies, Mechanisms, and Applications. Small 2022, 18, 202105089. [Google Scholar]
- Acharya, R.; Pati, S.; Parida, K. A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 2022, 357, 119105. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, J.Q.; Li, B.; Sun, H.Q.; Wang, S.B.; Duan, X.G. Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. J. Environ. Chem. Eng. 2022, 10, 107438. [Google Scholar] [CrossRef]
- Safian, M.T.U.; Umar, K.; Ibrahim, M.N.M. Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material. J. Clean Prod. 2021, 318, 128603. [Google Scholar] [CrossRef]
- Lopez-Salas, N.; Albero, J. CxNy: New Carbon Nitride Organic Photocatalysts. Front. Mater. 2021, 8, 772200. [Google Scholar] [CrossRef]
- Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. High-Efficiency g-C3N4 Based Photocatalysts for CO2 Reduction: Modification Methods. Adv. Fiber Mater. 2022, 4, 342–360. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy Fuels 2021, 35, 6504–6526. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere 2022, 297, 134190. [Google Scholar] [CrossRef]
- He, F.; Liu, X.; Zhao, X.; Zhang, J.; Dong, P.; Zhang, Y.; Zhao, C.; Sun, H.; Duan, X.; Wang, S.; et al. Manipulation of n → π* electronic transitions via implanting thiophene rings into two-dimensional carbon nitride nanosheets for efficient photocatalytic water purification. J. Mater. Chem. A 2022, 10, 20559–20570. [Google Scholar] [CrossRef]
- Pérez-Álvarez, D.T.; Brown, J.; Elgohary, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Davies, P.; Stafford, J. Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Mater. Adv. 2022, 3, 4103–4131. [Google Scholar] [CrossRef]
- Rajendran, S.; Chellapandi, T.; UshaVipinachandran, V.; Venkata Ramanaiah, D.; Dalal, C.; Sonkar, S.K.; Madhumitha, G.; Bhunia, S.K. Sustainable 2D Bi2WO6/g-C3N5 heterostructure as visible light-triggered abatement of colorless endocrine disruptors in wastewater. Appl. Surf. Sci. 2022, 577, 151809. [Google Scholar] [CrossRef]
- Kumar, P.; Vahidzadeh, E.; Thakur, W.K.; Kar, P.; Alam, K.M.; Goswami, A.; Mandi, N.; Cui, K.; Bernard, G.M.; Michaelis, V.K.; et al. C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Framework for Photocatalytic, Photovoltaic and Adsorbent Applications. J. Am. Chem. Soc. 2019, 141, 5415–5436. [Google Scholar] [CrossRef] [PubMed]
- Mane, G.P.; Talapaneni, S.N.; Lakhi, K.S.; Ilbeygi, H.; Ravon, U.; Al-Bahily, K.; Mori, T.; Park, D.H.; Vinu, A. Highly Ordered Nitrogen-Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation. Angew.Chem. Int. Ed. 2017, 56, 8481–8485. [Google Scholar] [CrossRef] [Green Version]
- Park, D.H.; Lakhi, K.S.; Ramadass, K.; Kim, M.K.; Talapaneni, S.N.; Joseph, S.; Ravon, U.; Al-Bahily, K.; Vinu, A. Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced CO2 Capture Capacity. Chem.Eur. J. 2017, 23, 10753–10757. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. A Mesoporous Rod-like g-C3N5 Synthesized by Salt-Guided Strategy: As a Superior Photocatalyst for Degradation of Organic Pollutant. ACS Sustain. Chem. Eng. 2019, 7, 625–631. [Google Scholar] [CrossRef]
- Kim, I.Y.; Kim, S.; Jin, X.; Premkumar, S.; Chandra, G.; Lee, N.-S.; Mane, G.P.; Hwang, S.-J.; Umapathy, S.; Vinu, A. Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angew. Chem. Int.Ed. 2018, 57, 17135–17140. [Google Scholar] [CrossRef]
- Liu, X.; Xing, S.; Xu, Y.; Chen, R.; Lin, C.; Guo, L. 3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2021, 250, 119363. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, Q.; Fang, Z.; Li, W.; Zheng, Y.; Ma, J.; Wang, Z.; Zhao, L.; Liu, S.; Shen, Y.; et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing. Chem 2021, 7, 2708–2721. [Google Scholar] [CrossRef]
- Zeng, X.; Hou, M.; Zhu, P.; Yuan, M.; Ouyang, S.; Lu, Q.; Zhao, C.; Wang, H.; Du, F.; Zeng, G.; et al. g-C3N5-dots as fluorescence probes prepared by an alkali-assisted hydrothermal method for cell imaging. RSC Adv. 2022, 12, 26476–26484. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, M.X.; Li, H.; Lu, Q.J.; Zhang, Y.Y.; Yao, S.Z. Porous graphitic carbon nitride with controllable nitrogen vacancies: As promising catalyst for enhanced degradation of pollutant under visible light. Mater. Des. 2019, 162, 210–218. [Google Scholar] [CrossRef]
- Ruban, S.M.; Sathish, C.I.; Ramadass, K.; Joseph, S.; Kim, S.; Dasireddy, V.D.B.C.; Kim, I.Y.; Al-Muhtaseb, A.H.; Sugi, Y.; Vinu, A. Ordered Mesoporous Carbon Nitrides with Tuneable Nitrogen Contents and Basicity for Knoevenagel Condensation. Chemcatchem 2021, 13, 468–474. [Google Scholar] [CrossRef]
- Kim, S.; Singh, G.; Sathish, C.I.; Panigrahi, P.; Daiyan, R.; Lu, X.; Sugi, Y.; Kim, I.Y.; Vinu, A. Tailoring the Pore Size, Basicity, and Binding Energy of Mesoporous C3N5 for CO2 Capture and Conversion. Chem.-Asian J. 2021, 16, 3999–4005. [Google Scholar] [CrossRef]
- Zhang, J.L.; Jing, B.H.; Tang, Z.Y.; Ao, Z.M.; Xia, D.H.; Zhu, M.S.; Wang, S.B. Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Appl. Catal. B-Environ. 2021, 289, 120023. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z.; Chen, W.; Cao, D.; Zheng, A. Two-dimensional graphitic C3N5 materials: Promising metal-free catalysts and CO2 adsorbents. J. Mater. Chem. A 2018, 6, 7168–7174. [Google Scholar] [CrossRef]
- Liu, T.; Yang, G.; Wang, W.; Wang, C.; Wang, M.; Sun, X.; Xu, P.; Zhang, J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting. Environ. Res. 2020, 188, 109741. [Google Scholar] [CrossRef]
- Quan, C.Y.; Xiao, S.S.; Yi, Y.W.; Sun, D.Z.; Ji, S.L.; Zhou, S.; Yang, J.P.; Niu, X.H.; Li, X.A. Explore the underlying mechanism of graphitic C3N5-hosted single-atom catalyst for electrocatalytic nitrogen fixation. Int. J. Hydrogen Energy 2022, 47, 22035–22044. [Google Scholar] [CrossRef]
- Li, T.; Cui, P.X.; Wang, X.L.; Liu, C.; Zeng, Y.; Fang, G.D.; Zhao, Y.; Gao, J.; Wang, Y.J.; Zhou, D.M. Efficient activation of peroxymonosulfate by C3N5 doped with cobalt for organic contaminant degradation. Environ. Sci.-Nano 2022, 9, 2534–2547. [Google Scholar] [CrossRef]
- He, P.; Gu, C.; Tang, B.; Zhou, Y.; Gan, M.; Zhu, J. Expeditious degradation of SMX by high-valent cobalt-oxo species derived from cobalt-doped C3N5-activated peroxymonosulfate with the assistance of visible light. Sep. Purif. Technol. 2022, 301, 122009. [Google Scholar] [CrossRef]
- Gujral, H.S.; Singh, G.; Yang, J.H.; Sathish, C.I.; Yi, J.; Karakoti, A.; Fawaz, M.; Ramadass, K.; Al-Muhtaseb, A.a.H.; Yu, X.; et al. Mesoporous titanium carbonitride derived from mesoporous C3N5 for highly efficient hydrogen evolution reaction. Carbon 2022, 195, 9–18. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, S.; Hossain, S.M.; Krishnamurthy, S.; Polshettiwar, V.; Ogale, S. Visible Light-Driven Highly Selective CO2 Reduction to CH4 Using Potassium-Doped g-C3N5. Langmuir 2022, 38, 3139–3148. [Google Scholar] [CrossRef]
- Hu, C.; Lin, Y.-H.; Yoshida, M.; Ashimura, S. Influence of Phosphorus Doping on Triazole-Based g-C3N5 Nanosheets for Enhanced Photoelectrochemical and Photocatalytic Performance. ACS Appl. Mater. Interfaces 2021, 13, 24907–24915. [Google Scholar] [CrossRef]
- Li, K.; Cai, W.; Zhang, Z.; Xie, H.; Zhong, Q.; Qu, H. Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: The key role of boron in nitrogen activation and mechanism. Chem. Eng. J. 2022, 435, 135017. [Google Scholar] [CrossRef]
- Sun, D.Z.; Zhang, X.M.; Shi, A.Q.; Quan, C.Y.; Xiao, S.S.; Ji, S.L.; Zhou, Z.B.; Li, X.A.; Chi, F.F.; Niu, X.H. Metal-free boron doped g-C3N5 catalyst: Efficient doping regulatory strategy for photocatalytic water splitting. Appl. Surf. Sci. 2022, 601, 154186. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, X.; Zhao, H.; Yang, S.; Chen, R.; Chen, L.; Zhang, R.; Ding, D.; Cai, T. Evaluation of N-doped carbon for the peroxymonosulfate activation and removal of organic contaminants from livestock wastewater and groundwater. J. Mater. Chem. A 2022, 10, 9171–9183. [Google Scholar] [CrossRef]
- Che, H.; Wang, J.; Gao, X.; Chen, J.; Wang, P.; Liu, B.; Ao, Y. Regulating directional transfer of electrons on polymeric g-C3N5 for highly efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 2022, 627, 739–748. [Google Scholar] [CrossRef]
- Li, M.; Lu, Q.; Liu, M.; Yin, P.; Wu, C.; Li, H.; Zhang, Y.; Yao, S. Photoinduced Charge Separation via the Double-Electron Transfer Mechanism in Nitrogen Vacancies g-C3N5/BiOBr for the Photoelectrochemical Nitrogen Reduction. ACS Appl. Mater. Interfaces 2020, 12, 38266–38274. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, Y.; Ji, H.; Liu, W.; Fu, J.; Sun, X. Type-II surface heterojunction of bismuth-rich Bi4O5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics. Sep. Purif. Technol. 2022, 280, 119772. [Google Scholar] [CrossRef]
- Chu, W.; Li, S.; Zhou, H.; Shi, M.; Zhu, J.; He, P.; Liu, W.; Wu, M.; Wu, J.; Yan, X. A novel bionic flower-like Z-scheme Bi4O5I2/g-C3N5 heterojunction with I−/I3− active sites and π-conjugated structure for increasing photocatalytic oxidation of elemental mercury. J. Environ. Chem. Eng. 2022, 10, 108623. [Google Scholar] [CrossRef]
- Li, S.J.; Cai, M.J.; Liu, Y.P.; Zhang, J.L.; Wang, C.C.; Zang, S.H.; Li, Y.J.; Zhang, P.; Li, X. In situ construction of a C3N5 nanosheet/Bi2WO6 nanodot S-scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr(vi). Inorg. Chem. Front. 2022, 9, 2479–2497. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Cai, M.; Liu, Y.; Dong, K.; Zhang, J. Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. J. Colloid Interface Sci. 2022, 624, 219–232. [Google Scholar] [CrossRef]
- Vadivel, S.; Hariganesh, S.; Paul, B.; Mamba, G.; Puviarasu, P. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 592, 124583. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Fan, T.; Zhang, M.; Yao, J.; Li, P.; Chen, S.; Liu, X. In situ synthesis of Ag3PO4/C3N5 Z-scheme heterojunctions with enhanced visible-light-responsive photocatalytic performance for antibiotics removal. Sci. Total Environ. 2021, 754, 141926. [Google Scholar] [CrossRef]
- Li, G.; Zeng, G.; Chen, Z.; Hong, J.; Ji, X.; Lan, Z.; Tan, X.; Li, M.; Hu, X.; Tang, C. In Situ Coupling Carbon Defective C3N5 Nanosheet with Ag2CO3 for Effective Degradation of Methylene Blue and Tetracycline Hydrochloride. Nanomaterials 2022, 12, 2701. [Google Scholar] [CrossRef]
- Vadivel, S.; Hariganesh, S.; Paul, B.; Rajendran, S.; Habibi-Yangjeh, A.; Maruthamani, D.; Kumaravel, M. Synthesis of novel AgCl loaded g-C3N5 with ultrahigh activity as visible light photocatalyst for pollutants degradation. Chem. Phys. Lett. 2020, 738, 136862. [Google Scholar] [CrossRef]
- Vadivel, S.; Fujii, M.; Rajendran, S. Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants. Chemosphere 2022, 307, 135716. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, K.; Zhong, X.; Jiang, F. Z-scheme LaCoO3/C3N5 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation. RSC Adv. 2022, 12, 24026–24036. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. Modulation of Z-Scheme Heterojunction Interface between Ultrathin C3N5 Nanosheets and Metal-Organic Framework for Boosting Photocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 26742–26751. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.M.; Jensen, C.E.; Kumar, P.; Hooper, R.W.; Bernard, G.M.; Patidar, A.; Manuel, A.P.; Amer, N.; Palmgren, A.; Purschke, D.N.; et al. Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core-Shell Nanowires. ACS Appl. Mater. Interfaces 2021, 13, 47418–47439. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qiao, H.; Guan, P.; Yang, B.; Liu, B. Fabrication of CdS/C3N5 photocatalyst for enhanced H2 production. Compos. Interfaces 2022, 2076363. [Google Scholar] [CrossRef]
- Yi, F.; Liu, J.; Liang, G.; Xiao, X.; Wang, H. Insight into the enhanced degradation mechanism of g-C3N4/g-C3N5 heterostructures through photocatalytic molecular oxygen activation in Van der Waals junction and excitation. J. Alloys Compd. 2022, 905, 164064. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, X.; Wu, L.; Chen, T.; Li, Y.; He, R.; Zhu, W.; Zhu, L.; Duan, T. Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. J. Hazard. Mater. 2022, 422, 126912. [Google Scholar] [CrossRef]
- Wang, L.X.; Bie, C.B.; Yu, J.G. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 2022, 4, 973–983. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2107668. [Google Scholar] [CrossRef]
- Peng, C.; Han, L.X.; Huang, J.M.; Wang, S.Y.; Zhang, X.H.; Chen, H. Comprehensive investigation on robust photocatalytic hydrogen production over C3N5. Chin. J. Catal. 2022, 43, 410–420. [Google Scholar] [CrossRef]
- Han, L.X.; Huang, J.M.; Zhan, J.; Zhang, X.H.; Wang, S.Y.; Chen, H. Construction of Highly Dispersed Ni Sites on N-rich Carbon Nitride for Enhanced Photocatalytic NO Removal. Adv. Sustain. Syst. 2022, 2200009. [Google Scholar] [CrossRef]
- Li, Q.; Song, S.; Mo, Z.; Zhang, L.; Qian, Y.; Ge, C. Hollow carbon nanospheres@graphitic C3N5 heterostructures for enhanced oxygen electroreduction. Appl. Surf. Sci. 2022, 579, 152006. [Google Scholar] [CrossRef]
- Wu, L.; Yang, X.; Chen, T.; Li, Y.; Meng, Q.; Zhu, L.; Zhu, W.; He, R.; Duan, T. Three-dimensional C3N5 /RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chem. Eng. J. 2022, 427, 131773. [Google Scholar] [CrossRef]
- Han, L.X.; Peng, C.; Huang, J.M.; Sun, L.H.; Wang, S.Y.; Zhang, X.H.; Yang, Y. Noble-Metal-Free NixSy-C3N5 Hybrid Nanosheet with Highly Efficient Photocatalytic Performance. Catalysts 2021, 11, 1089. [Google Scholar] [CrossRef]
- Han, L.; Peng, C.; Huang, J.; Wang, S.; Zhang, X.; Chen, H.; Yang, Y. Ultrafast synthesis of near-zero-cost S-doped Ni(OH)2 on C3N5 under ambient conditions with enhanced photocatalytic activity. RSC Adv. 2021, 11, 36166–36173. [Google Scholar] [CrossRef]
- Teng, M.; Shi, J.; Qi, H.; Shi, C.; Wang, W.; Kang, F.; Eqi, M.; Huang, Z. Effective enhancement of electron migration and photocatalytic performance of nitrogen-rich carbon nitride by constructing fungal carbon dot/molybdenum disulfide cocatalytic system. J. Colloid Interface Sci. 2022, 609, 592–605. [Google Scholar] [CrossRef]
- Shi, J.; Wang, W.; Teng, M.; Kang, F.; E′qi, M.; Huang, Z. Biomimetic nitrogen-rich photocatalyst based on cadmium sulfide for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 608, 954–962. [Google Scholar] [CrossRef]
- Jin, Z.; Wei, T.; Huang, J.; Li, F.; Yang, Y.; Xu, L. Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production. Int. J. Hydrogen Energy 2020, 45, 22711–22721. [Google Scholar] [CrossRef]
- Liu, D.; Yao, J.; Chen, S.T.; Zhang, J.; Li, R.J.; Peng, T.Y. Construction of rGO-coupled C3N4/C3N5 2D/2D Z-scheme heterojunction to accelerate charge separation for efficient visible light H2 evolution. Appl. Catal. B-Environ. 2022, 318, 121822. [Google Scholar] [CrossRef]
- Wang, Y.; Thanh Ngoc, P.; Tian, Y.; Morikawa, Y.; Yan, L. Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products. J. Colloid Interface Sci. 2021, 585, 740–749. [Google Scholar] [CrossRef]
- Debnath, B.; Hossain, S.M.; Sadhu, A.; Singh, S.; Polshettiwar, V.; Ogale, S. Construction of a 2D/2D g-C3N5/NiCr-LDH Heterostructure to Boost the Green Ammonia Production Rate under Visible Light Illumination. ACS Appl. Mater. Interfaces 2022, 14, 37076–37087. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Zhang, Q.; Li, F.; Xu, L. Constructing electron transfer pathways and active centers over W18O49 nanowires by doping Fe3+ and incorporating g-C3N5 for enhanced photocatalytic nitrogen fixation. Inorg. Chem. Front. 2021, 8, 3566–3575. [Google Scholar] [CrossRef]
- Zhang, J.L.; Tao, H.C.; Wu, S.S.; Yang, J.L.; Zhu, M.S. Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Appl. Catal. B-Environ. 2021, 296, 120372. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Wu, L.; Wang, Z.; Cao, Y.; Cheng, J.; Chen, G.; Zhao, Q.; Jiang, M.; Chen, Z.; et al. Nitrogen-rich carbon nitrogen polymers for enhancing the sorption of uranyl. Chin. Chem. Lett. 2022, 33, 3468–3473. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, Z.; Wang, H.; Lu, Q.; Ruan, G.; Zhao, C.; Du, F. Sustainable and reusable electrospun g-C3N5/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers for photocatalytic degradation of emerging pharmaceutical pollutants. New J. Chem. 2022, 46, 11840–11850. [Google Scholar] [CrossRef]
- Wei, W.; Gong, H.; Sheng, L.; Wu, H.; Zhu, S.; Feng, L.; Li, X.; You, W. Highly efficient photocatalytic activity and mechanism of novel Er3+ and Tb3+ co-doped BiOBr/g-C3N5 towards sulfamethoxazole degradation. Ceram. Int. 2021, 47, 24062–24072. [Google Scholar] [CrossRef]
- He, X.; Zhu, D. In situ solvothermal method of C3N5@NH2-MIL-125 composites with enhanced visible-light photocatalytic performance. J. Mater. Sci. Mater. Electron. 2021, 33, 388–398. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Maheskumar, V.; Yea, Y.; Yoon, Y.; Muthuraj, V.; Park, C.M. 2D/2D nitrogen-rich graphitic carbon nitride coupled Bi2WO6 S-scheme heterojunction for boosting photodegradation of tetracycline: Influencing factors, intermediates, and insights into the mechanism. Compos. Pt. B-Eng. 2022, 234, 109726. [Google Scholar] [CrossRef]
- Vadivel, S.; Fujii, M.; Rajendran, S. Novel S-scheme 2D/2D Bi4O5Br2 nanoplatelets/g-C3N5 heterojunctions with enhanced photocatalytic activity towards organic pollutants removal. Environ. Res. 2022, 213, 113736. [Google Scholar] [CrossRef]
- Ma, C.; Yu, Z.; Wei, J.; Tan, C.; Yang, X.; Wang, T.; Yu, G.; Zhang, C.; Li, X. Metal-free ultrathin C3N5 photocatalyst coupling sodium percarbonate for efficient sulfamethoxazole degradation. Appl. Catal. B-Environ. 2022, 319, 121951. [Google Scholar] [CrossRef]
Catalyst | Reaction Conditions | H2 Evolution (mmol·g−1·h−1) | Quantum Efficiency | Ref. |
---|---|---|---|---|
g-C3N5(MCN-8) | 300 W Xe lamp (λ > 420 nm) | 2.67 | [18] | |
Catalyst (1g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst | ||||
Ultrathin C3N5 nanosheets | 300W Xe lamp (λ > 420 nm) | 0.03 | [30] | |
Catalyst (0.5 g L−1) | ||||
TEOA (10 vol%) | ||||
NixSy-C3N5 | 300 W Xe lamp (λ > 420 nm) | 35.44 | 37.0% (at 420 nm) | [63] |
Catalyst (1.5 g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst | ||||
S-Ni (OH)2-C3N5 | 300 W Xe lamp (λ > 420 nm) | 32.22 | 30.9% (at 420 nm) | [64] |
Catalyst (1.5 g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst | ||||
Pt-C3N5 | 300 W Xe lamp (λ > 420 nm) | 28.96 | 28.7% (at 420 nm) | [59] |
Catalyst (1.5 g L−1) | ||||
TEOA (10 vol%) | ||||
CD/MoS2/C3N5 | 300 W Xe lamp (λ > 420 nm) | 0.45 | [65] | |
Catalyst (0.5 g L−1) | ||||
Na2S and Na2SO3 (0.35 M) | ||||
CdS/C3N5 | 300 W Xe lamp (λ > 420 nm) | 0.50 | [54] | |
Catalyst (0.5 g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst (3 wt%) | ||||
CdS/C3N5 (CCN) | 300 W Xe lamp (λ > 420 nm) | 2.69 | [66] | |
Catalyst (0.5 g L−1) | ||||
Na2S and Na2SO3 mixtures (0.35 M) | ||||
Pt cocatalyst (3 wt%) | ||||
C3N5/Zn0.5Cd0.5S | 300W Xe lamp(λ > 420 nm) | 142.8 | 33.7% (at 420 nm) | [67] |
Catalyst (0.05 g L−1) | ||||
Na2S (0.35 M) and Na2SO3 (0.25 M) | ||||
NH2-UiO-66/N-CN-2 | visible light (λ ≥ 420 nm) | 3.94 | 6.8% (at 420 nm) | [52] |
Catalyst (0.05 g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst (2 wt%) | ||||
C3N4/rGO/C3N5 | 300 W Xe-lamp(λ ≥ 400 nm) | 6.38 | 3.5% (at 420 nm) | [68] |
Catalyst (1 g L−1) | ||||
TEOA (10 vol%) | ||||
Pt cocatalyst (1.0 wt%) |
Catalysts | Reaction Conditions | Removal Efficiency (%) | Reactive Species | Ref. |
---|---|---|---|---|
NixSy-C3N5 | flow reactor and visible LED | 40% | h+, ·OH, ·O2−, and 1O2 | [63] |
S-Ni (OH)2-C3N5 | 25 mg catalyst NO (~600ppb at 1000 mL min−1) A 30 W visible LED | 42% | h+, ·OH, ·O2−, and 1O2 | [64] |
TiO2(P25)-C3N5 | 300 W Xe lamp (λ > 400 nm) 20 mg catalyst; NO: 450 ppb and RH: 15% | 67 % | e−, h+, and ·O2− | [72] |
Ni-C3N5 | NO:600 ppb | 54% | ·OH, ·O2−, and 1O2 | [60] |
Catalyst | Pollutants | Reaction Conditions | Reactive Species | Removal Efficiency | Ref. |
---|---|---|---|---|---|
RN-g-C3N5 | MB | 50 W halogen tungsten lamp | ·O2−, ·OH | 98%, 120 min | [20] |
Catalyst (1 g L−1) | |||||
MB (20 mL, 20.0 mg L−1) | |||||
Ultrathin C3N5 nanosheets | MB | 300 W Xe lamp (400 nm) | ·O2−, h+ | 95%, 40 min | [30] |
Catalyst (0.5 g L−1) | |||||
MB solution (40 mL, 2.5 mg L−1) | |||||
Nv g-C3N5-0.1 | MB | 50 W halogen tungsten lamp | ·O2−, ·OH | 95%, 120 min | [25] |
RhB | Catalyst (1 g L−1) | 97%, 120 min | |||
MO | Pollutant (20 mL, 40.0 mg L−1) | 95%, 120 min | |||
CDs/MoS2/C3N5 | MB | 300 W Xe lamp (λ > 420 nm) | 1O2, ·O2−, ·OH | 94%, 120 min | [65] |
Catalyst (0.02 g L−1) | |||||
MB (50 mL, 30 mg L−1) | |||||
CdS-MHP | RhB | Solar simulator (100 mW/cm2) | ·O2−, ·OH, HO2, and e− | 77%, 20 min 90%, 80 min | [53] |
Catalyst (0.1 g L−1) | |||||
RhB (50 mL, 0.01mM) | |||||
g-C3N5/g-C3N4 | RhB TC-HCl | 300 W Xe lamp (λ > 420 nm) | 1O2, ·O2−, and ·OH | 98%, 30 min 92%, 60 min | [55] |
Catalyst (0.4 g L−1) | |||||
RhB (10 mg L−1, 50 mL) | |||||
TC-HCl (10 mg/L, 50 mL) | |||||
g-C3N5/MIL-101(Fe)/PANCMA | Carbamazepine | 300 W Xe lamp (λ >420 nm) | h+, ·O2−, and ·OH | 94%, 40 min | [74] |
ciprofloxacin | Catalyst (0.1 g L−1) | 97%, 40 min | |||
tetracycline | Carbamazepine (50 mL, 200 ng mL−1) | 98%, 40 min | |||
AgCl/g-C3N5 | RhB | A halogen lamp (300W) | O2−, h+ | 96%, 30 min | [49] |
Catalyst (1 g L−1) | |||||
RhB solution (50 mL, 10 mg L−1) | |||||
Er3+/Tb3+@BiOBr-g-C3N5 | sulfamethoxazole | 500 W tungsten halogen lamp | ·O2−, ·OH | 94%, 60 min | [75] |
Catalyst (1.3 g L−1) | |||||
SMX (75 mL, 10 ppm) | |||||
g-C3N5/Bi4O5Br2 | sulfathiazole (STZ) | 300 W Xe lamp | ·O2−, h+, and ·OH | 100%, 60 min | [42] |
Catalyst (0.5 g L−1) | |||||
STZ (200 mL, 10 mg L−1) | |||||
Ag3PO4/C3N5 | TCH | A 300 W Xe lamp (λ > 400 nm) | ·O2− and ·OH | 91%, 60 min | [47] |
Photocatalyst (1 g L−1) | |||||
TCH (50 mL, 20 mg L−1) | |||||
C3N5/Ag2CO3 | MB TC-HCl | 300 W xenon lamp, λ > 400 nm | ·O2− and h+ | 97%, 90 min 98%, 100 min | [48] |
Catalyst (1 g L−1) | |||||
MB (60 mg L−1, 50 mL, and pH = 8.0) | |||||
TC-HCl (50 mg L−1, 50 mL, and pH = 4.8) | |||||
Bi2WO6/g-C3N5 | Tetracycline 2-ercaptobenzothiazol chlorpyrifos | under visible light (λ > 400 nm) | h+, ·O2−, and ·OH | 93%, 90 min | [16] |
Catalyst (0.6 g L−1) | 97%, 90 min | ||||
Pollutant (10 mg L−1, 50 mL) | 94%, 90 min | ||||
FeOCl/g-C3N5 | TC | 500 W Xe lamp (λ > 420 nm) | 500 W Xe lamp (λ > 420 nm) | 95%, 40 min | [50] |
Catalyst (1 mg mL−1) | |||||
TC (75 mL, 10 mg L−1) | |||||
H2O2 solution (30%, 200 μL) | |||||
CeTi2O6/g-C3N5 | 2,4 dichlorophenol | 300 W xenon lamp (λ > 420 nm) | ·O2−, ·OH | 96%, 120 min | [46] |
Photocatalyst (1.6 g L−1) | |||||
2,4-DCP solution (75 mL, 10 ppm) | |||||
C3N5@NH2-MIL-125 | RhB | 300 W xenon lamp (λ > 420 nm) | ·O2−, h+, and ·OH | 93%, 120 min | [76] |
Catalyst (0.5 g L−1) | |||||
RhB (100 mL, 10 mg L−1) | |||||
2D/0D C3N5/ Bi2WO6 | TC | 300 W Xe lamp (λ > 420 nm) | ·O2−, h+, and ·OH | 94%, 60 min | [44] |
Catalyst (0.2 g L−1) | |||||
TC (20 mg L−1, 100 mL, and pH 5.2) | |||||
2D/0D Bi2MoO6/C3N5 | TC | 300 W Xe lamp (λ > 420 nm) | ·O2−, ·OH, and h+ | 88%, 75 min | [45] |
Catalyst (0.3 g L−1) | |||||
TC (20 mg L−1, 100 mL, and pH 5.2) | |||||
2D/2D Bi2WO6@g-C3N5 | TC | 300 W Xe lamp (λ > 420 nm) | ·O2−, ·OH, and h+ | 100%, 60 min | [77] |
Catalysts (0.4 g L−1) | |||||
TC (10 mg L−1, 50 mL) | |||||
2D/2D Bi4O5Br2/g-C3N5 | Ciprofloxacin bisphenol-A | Xe lamp at 500 W (165 mW/cm2) | ·O2−, ·OH, and h+ | 94%, 60 min 92%, 80 min | [78] |
Catalysts (0.67 g L−1) | |||||
Pollutant (20 mg L−1, 75 mL) | |||||
2D/0D C3N5/ Bi2WO6 | Cr (VI) | 300 W Xe lamp (λ > 420 nm) | ·O2− and e− | 97%, 50 min | [44] |
Catalyst (0.2 g L−1) | |||||
Cr (VI) (10 mg L−1, 100 mL, and pH 2.5) | |||||
2D/0D Bi2MoO6/C3N5 | Cr (VI) | 300 W Xe lamp (λ > 420 nm) | ·O2− and e− | 97%, 60 min | [45] |
Catalyst (30 mg) | |||||
Cr (VI) (10 mg L−1, 100 mL, and pH 2.5) | |||||
2D/2D C3N5/GO | U(VI) | 300 W Xe lamp (λ > 420 nm) | e− | 96%, 90 min | [56] |
Catalyst (0.5 g L−1) | |||||
U(VI) solution (10 ppm, 100 mL) | |||||
2D/2D C3N5/RGO | U(VI) | 300 W Xe lamp (λ > 420 nm) | e− | 95%, 100 min | [62] |
Catalyst (0.2 g L−1) | |||||
U(VI) (10 mg L−1, 100 mL) | |||||
pH 5.0 | |||||
T = 298 K | |||||
Bi4O5I2/g-C3N5 | Hg0 | 6 W LED lamp (λ > 400 nm) | ·O2− and h+ | 93%, 60 min | [43] |
Catalyst (40 mg) | |||||
Mercury vapors (65 μg m−3) | |||||
gas flow rate of 1.2 L min−1 | |||||
C3N5 | SMX | 300 W xenon lamp (λ > 420 nm) | ·O2−, h+, SO4−⋅, 1O2, and ·OH | PMS/C3N5/Vis | [28] |
Catalyst (0.5 g L−1) | 67%, 60 min | ||||
PMS (0.125 g L−1) | PDS/C3N5/Vis | ||||
SMX (5 mg L−1) | 70%, 60 min | ||||
PDA-g-CN-1.0 | SMX | Catalyst (50 mg L−1) | C−PMS * complexes | 100%, 20 min | [39] |
PMS (1mM) | |||||
SMX (10 mg L−1) | |||||
Co-C3N5 | PCB28 | Catalyst (0.2 g L−1) | SO4−· and ·OH | 96%, 30 min | [32] |
PMS (2.0 mM) | |||||
PCB28 (0.5 mg L−1) | |||||
Co-C3N5 | SMX | 500 W Xe lamp (λ > 420 nm) | high-valent cobalt oxide (Co (IV)) species | 100%, 20 min | [33] |
Catalyst (0.5 g L−1) | |||||
PMS (1.0 mM) | |||||
SMX solution (30 mL, 10 mg L−1) | |||||
U-C3N5 | SMZ | visible light (λ > 420 nm) | ·OH, ·O2−, 1O2, ·CO3−, and h+ | 94%, 120 min | [79] |
Catalyst (0.4 g L−1) | |||||
SPC (0.1 g L−1) | |||||
SMZ (100 mL, 10 mg L−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, S.; Zhao, C.; Zheng, J. Engineered g-C3N5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation. Nanomaterials 2023, 13, 499. https://doi.org/10.3390/nano13030499
Liu J, Wang S, Zhao C, Zheng J. Engineered g-C3N5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation. Nanomaterials. 2023; 13(3):499. https://doi.org/10.3390/nano13030499
Chicago/Turabian StyleLiu, Juanjuan, Shuaijun Wang, Chaocheng Zhao, and Jingtang Zheng. 2023. "Engineered g-C3N5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation" Nanomaterials 13, no. 3: 499. https://doi.org/10.3390/nano13030499
APA StyleLiu, J., Wang, S., Zhao, C., & Zheng, J. (2023). Engineered g-C3N5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation. Nanomaterials, 13(3), 499. https://doi.org/10.3390/nano13030499