Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gr/PET Film Fabrication
2.2. Structural Characterization
2.3. Nanoscratch Test
3. Results and Discussion
3.1. Structural Properties
3.2. Frictional and Wear Resistance Properties
3.3. Mechanisms Improving Frictional and Wear Resistance Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.; Peng, Y.; Lang, H. A novel approach to decrease friction of graphene. Carbon 2017, 118, 233–240. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Han, F.; Wang, D.; Zhang, S. Multilayer graphene for reducing friction and wear in water-based sand cleaning liquid. Wear 2021, 470, 203619. [Google Scholar] [CrossRef]
- Mutyala, K.C.; Wu, Y.A.; Erdemir, A.; Sumant, A.V. Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon 2019, 146, 524–527. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few layers graphene to reduce wear and friction on sliding steel surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Penkov, O.; Kim, H.J.; Kim, H.J.; Kim, D.E. Tribology of graphene: A review. Int. J. Precis. Eng. Manuf. 2014, 15, 577–585. [Google Scholar] [CrossRef]
- Spear, J.C.; Ewers, B.W.; Batteas, J.D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 2015, 10, 301–314. [Google Scholar] [CrossRef]
- Ouyang, T.; Shen, Y.; Lei, W.; Xu, X.; Liang, L.; Waqar, H.S.; Lin, B.; Tian, Z.Q.; Shen, P.K. Reduced friction and wear enabled by arc-discharge method-prepared 3D graphene as oil additive under variable loads and speeds. Wear 2020, 462, 203495. [Google Scholar] [CrossRef]
- Tripathi, K.; Gyawali, G.; Lee, S.W. Graphene coating via chemical vapor deposition for improving friction and wear of gray cast iron at interfaces. ACS Appl. Mater. Interfaces 2017, 9, 32336–32351. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.H.; Jung, J.; Kim, C.; Lee, J.; Oh, S.D.; Kim, K.S.; Lee, C. Comparison of Frictional Properties of CVD-Grown MoS2 and Graphene Films under Dry Sliding Conditions. Nanomaterials 2019, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Mura, A.; Adamo, F.; Wang, H.; Leong, W.S.; Ji, X.; Kong, J. Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribol. Int. 2019, 134, 335–340. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Du, H.; Xue, T.; Kang, Y.; Zhang, Y.; Zhao, P.; Li, Q. Revisiting Frictional Characteristics of Graphene: Effect of In-Plane Straining. ACS Appl. Mater. Interfaces 2022, 14, 41571–41576. [Google Scholar] [CrossRef] [PubMed]
- Mura, A.; Canavese, G.; Goti, E.; Rivolo, P.; Wang, H.; Ji, X.; Kong, J. Effect of different types of graphene coatings on friction and wear performance of aluminum alloy. Mech. Adv. Mater. Struct. 2022, 29, 539–547. [Google Scholar] [CrossRef]
- Ehsani, A.; Heidari, A.A.; Sajedi, M. Graphene and graphene/polymer composites as the most efficient protective coatings for steel, aluminum and copper in corrosive media: A review of recent studies. Chem. Rec. 2020, 20, 467–493. [Google Scholar] [CrossRef]
- Qureshi, T.; Wang, G.; Mukherjee, S.; Islam, M.A.; Filleter, T.; Singh, C.V.; Panesar, D.K. Graphene-based anti-corrosive coating on steel for reinforced concrete infrastructure applications: Challenges and potential. Constr. Build. Mater. 2022, 351, 128947. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z. A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 2019, 7, 199–216. [Google Scholar] [CrossRef]
- Chouhan, A.; Mungse, H.P.; Khatri, O.P. Surface chemistry of graphene and graphene oxide: A versatile route for their dispersion and tribological applications. Adv. Colloid Interface Sci. 2020, 283, 102215. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Huang, Z.; Chen, C. Effect of Substrate Roughness on the Friction and Wear Behaviors of Laser-Induced Graphene Film. Lubricants 2022, 10, 239. [Google Scholar] [CrossRef]
- Narute, P.; Sharbidre, R.S.; Lee, C.J.; Park, B.C.; Jung, H.J.; Kim, J.H.; Hong, S.G. Structural Integrity Preserving and Residue-Free Transfer of Large-Area Wrinkled Graphene onto Polymeric Substrates. ACS Nano 2022, 16, 9871–9882. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, D.W.; Hong, S.G.; Park, B.C.; Kim, J.H.; Jung, H.J.; Lee, S.B. Fracture mechanism and electromechanical behavior of chemical vapor deposited graphene on flexible substrate under tension. Carbon 2017, 118, 475–484. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Kim, S.-M.; Lee, S.-M.; Kim, J.-H.; Lee, H.-J.; Kim, K.S.; Kwon, Y.D.; Kim, K.-S. One-step etching, doping, and adhesion-control process for graphene electrodes. Carbon 2015, 82, 168–175. [Google Scholar] [CrossRef]
- Kim, C.; Yoon, M.A.; Jang, B.; Kim, H.D.; Kim, J.H.; Hoang, A.T.; Ahn, J.H.; Jung, H.J.; Lee, H.J.; Kim, K.S. Damage-free transfer mechanics of 2-dimensional materials: Competition between adhesion instability and tensile strain. NPG Asia Mater. 2021, 13, 44. [Google Scholar] [CrossRef]
- Won, S.; Hwangbo, Y.; Lee, S.K.; Kim, K.S.; Kim, K.S.; Lee, S.M.; Lee, H.J.; Ahn, J.H.; Kim, J.H.; Lee, S.B. Double-layer CVD graphene as stretchable transparent electrodes. Nanoscale 2014, 6, 6057–6064. [Google Scholar] [CrossRef]
- Wang, X.; Xu, P.; Han, R.; Ren, J.; Li, L.; Han, N.; Xing, F.; Zhu, J. A review on the mechanical properties for thin film and block structure characterised by using nanoscratch test. Nanotechnol. Rev. 2019, 8, 628–644. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, M.; Lu, C.; Zhang, J. Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests. Ceram. Int. 2020, 46, 6060–6066. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Ye, Y.X.; Liu, C.Z.; Feng, R.; Yao, K.F.; Nieh, T.G. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics 2019, 113, 106561. [Google Scholar] [CrossRef]
- Humood, M.; Qin, S.; Song, Y.; Polychronopoulou, K.; Zhang, Y.; Grunlan, J.C.; Polycarpou, A.A. Influence of graphene reduction and polymer cross-linking on improving the interfacial properties of multilayer thin films. ACS Appl. Mater. Interfaces 2017, 9, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yao, Q.; Qi, Y.; Cheng, Y.; Wang, H.; Li, Q.; Meng, Y. Wear evolution of monolayer graphene at the macroscale. Carbon 2017, 115, 600–607. [Google Scholar] [CrossRef]
- Georgiou, E.P.; Drees, D.; Lopes, L.M.; Gerlach, C. Measuring the Frictional Behavior and Adhesion of PET Bottles. Lubricants 2022, 10, 204. [Google Scholar] [CrossRef]
- Cho, D.H.; Bhushan, B.; Dyess, J. Mechanisms of static and kinetic friction of polypropylene, polyethylene terephthalate, and high-density polyethylene pairs during sliding. Tribol. Int. 2016, 94, 165–175. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P.; Mitterer, C. Materials Engineering for Flexible Metallic Thin Film Applications. Materials 2022, 15, 926. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.; de Wijn, A.S. Understanding the friction of atomically thin layered materials. Nat. Commun. 2020, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guan, Z.; Liu, J.; Yang, W.; Wang, H. Anomalous layer-dependent lubrication on graphene-covered-substrate: Competition between adhesion and plasticity. Appl. Surf. Sci. 2022, 598, 153762. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yallew, T.B.; Narute, P.; Sharbidre, R.S.; Byen, J.C.; Park, J.; Hong, S.-G. Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer. Nanomaterials 2023, 13, 655. https://doi.org/10.3390/nano13040655
Yallew TB, Narute P, Sharbidre RS, Byen JC, Park J, Hong S-G. Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer. Nanomaterials. 2023; 13(4):655. https://doi.org/10.3390/nano13040655
Chicago/Turabian StyleYallew, Temesgen B., Prashant Narute, Rakesh S. Sharbidre, Ji Cheol Byen, Jaesung Park, and Seong-Gu Hong. 2023. "Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer" Nanomaterials 13, no. 4: 655. https://doi.org/10.3390/nano13040655
APA StyleYallew, T. B., Narute, P., Sharbidre, R. S., Byen, J. C., Park, J., & Hong, S. -G. (2023). Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer. Nanomaterials, 13(4), 655. https://doi.org/10.3390/nano13040655