All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Precursor Solutions
2.3. Film Deposition and Device Fabrication
2.4. Characterizations
3. Results and Discussion
3.1. Microstructure Analysis of HfO2 Thin Films
3.2. X-ray Photoelectron Spectroscopy (XPS) Measurements for HfO2 Thin Films
3.3. AFM Analysis of HfO2 Thin Films
3.4. Thermogravimetric Analysis
3.5. U-V Analysis of HfO2 Thin Films
3.6. Areal Capacitance of WI HfO2 Thin Film
3.7. Electrical Properties of Solution-Processed of In2O3/HfO2 TFTs
Temperature (°C) | Dielectric | Solvent | µFE [cm2 v−1s−1] | References |
---|---|---|---|---|
600 | SrOx | 2-ME | 5.61 | [37] |
300 | LiOx | 2-ME | 5.69 | [38] |
500 | YbOx | 2-Methoxyethanol+N, N-dimethylformamide | 4.98 | [39] |
200 | ZrO2:B | 2-ME | 4.01 | [40] |
500 | MgO | 2ME | 5.48 | [41] |
350 | SiO2 | 2ME | 3.53 | [42] |
500 | HfO2 | H2O | 9 | Current work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Xin, E.; Zhang, J. Sol-Gel processed indium zinc oxide thin film and transparent thin film transistors. J. Sol-Gel Sci. Technol. 2013, 65, 130–134. [Google Scholar] [CrossRef]
- Huang, G.M.; Duan, L.; Dong, G.F.; Zhang, D.Q.; Qiu, Y. High-moblity soloution-processed tin oxide thin film transistors with high-k Alumina dielectric working in ehacement mode. ACS Appl. Mater. Interfaces 2014, 6, 20786–20794. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Pimentel, A.; Pereira, L.; Goncalves, G.; Martins, R. Amorphous IZO TFTs with saturation mobilities exceeding 100 cm2/Vs. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2007, 1, R34–R36. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. J. Sci. 2003, 300, 1269–1272. [Google Scholar]
- Lorenz, M.; Rao, M.R.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A. The 2016 oxide electronic materials and oxide interfaces roadmap. Appl. Phys. D 2016, 49, 433001. [Google Scholar] [CrossRef]
- Fujii, M.; Ishikawa, Y.; Ishihara, R.; van der Cingel, J.; Mofrad, M.R.; Horita, M.; Uraoka, Y. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing. Appl. Phys. Lett. 2013, 102, 122107. [Google Scholar] [CrossRef]
- Han, S.-Y.; Herman, G.S.; Chang, C.H. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 2011, 133, 5166–5169. [Google Scholar] [CrossRef]
- Lee, D.H.; Chang, Y.J.; Herman, G.S.; Chang, C.H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 2007, 19, 843–847. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Thomas, S.; Wöbkenberg, P.H.; Bradley, D.D.; McLachlan, M.A.; Anthopoulos, T.D. High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air. Adv. Mater. 2011, 23, 1894–1898. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-G.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Banger, K.; Yamashita, Y.; Mori, K.; Peterson, R.; Leedham, T.; Rickard, J.; Sirringhaus, H. Low-temperature high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’process. Nat. Mater. 2011, 10, 45. [Google Scholar] [CrossRef]
- Ding, X.; Yang, B.; Xu, H.; Qi, J.; Li, X.; Zhang, J. Low-Temperature Fabrication of IZO Thin Film for Flexible Transistors. Nanomaterials 2021, 11, 2552. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 2013, 103, 033518. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.X.; Zhu, H.H.; Xu, F.; Fortunato, E.; Martins, R.; Shan, F.K. Fully Solution-Processed Low-Voltage Aqueous In2O3 Thin-Film Transistors Using an Ultrathin ZrOx Dielectric. ACS Appl. Mater. Interfaces 2014, 6, 17364–17369. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Water-induced scandium oxide dielectric for low-operating voltage n-and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 2015, 25, 7180–7188. [Google Scholar] [CrossRef]
- Liu, G.; Liu, A.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y.; Shan, F. Low-Temperature, Nontoxic Water-Induced Metal-Oxide Thin Films and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2015, 25, 2564–2572. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, P.; Zhang, B.; Falk, M.L.; Katz, H.E. Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. J. Mater. Chem. 2013, 25, 3788–3796. [Google Scholar] [CrossRef]
- Lee, E.; Ko, J.; Lim, K.H.; Kim, K.; Park, S.Y.; Myoung, J.M.; Kim, Y.S. Gate Capacitance-Dependent Field-Effect Mobility in Solution-Processed Oxide Semiconductor Thin-Film Transistors. Adv. Funct. Mater. 2014, 24, 4689–4697. [Google Scholar] [CrossRef]
- Li, W.; He, G.; Zheng, C.; Liang, S.; Zhu, L.; Jiang, S. Solution-processed HfGdO gate dielectric thin films for CMOS application: Effect of annealing temperature. J. Alloys. Compd. 2018, 731, 150–155. [Google Scholar] [CrossRef]
- Zhu, L.; He, G.; Li, W.; Yang, B.; Fortunato, E.; Martins, R. Nontoxic, Eco-friendly Fully Water-Induced Ternary Zr–Gd–O Dielectric for High-Performance Transistors and Unipolar Inverters. Adv. Electro. Mater. 2018, 4, 1800100. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, G.; Liu, A.; Song, H.; Hou, Y.; Shin, B.; Shan, F. Low-temperature fabrication of high performance indium oxide thin film transistors. RSC Adv. 2015, 5, 37807–37813. [Google Scholar] [CrossRef]
- Barquinha, P.; Pereira, L.; Goncalves, G.; Martins, R.; Kuščer, D.; Kosec, M.; Fortunato, E. Performance and stability of low temperature transparent thin-film transistors using amorphous multicomponent dielectrics. J. Electrochem. Soc. 2009, 156, H824–H831. [Google Scholar] [CrossRef]
- Yoo, Y.B.; Park, J.H.; Lee, K.H.; Lee, H.W.; Song, K.M.; Lee, S.J.; Baik, H.K. Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C 2013, 1, 1651–1658. [Google Scholar] [CrossRef]
- Shimizu, H.; Sato, T.; Konagai, S.; Ikeda, M.; Takahashi, T.; Nishide, T. Temperature-Programmed Desorption Analyses of Sol–Gel Deposited and Crystallized HfO2 Films. Jpn. J. Appl. Phys. 2007, 46, 4209. [Google Scholar] [CrossRef]
- Chua, L.L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194. [Google Scholar] [CrossRef]
- Weng, J.; Chen, W.; Xia, W.; Zhang, J.; Jiang, Y.; Zhu, G. Low-temperature solution-based fabrication of high-k HfO2 dielectric thin films via combustion process. J. Sol-Gel Sci. Technol. 2017, 81, 662–668. [Google Scholar] [CrossRef]
- Städter, M.; Müller, K.; Rachow, F.; Richter, M.; Schmeißer, D. Ambient pressure thermal desorption spectroscopy (AP-TDS) of NiO/SiO2 catalysts. Environ. Earth Sci. 2013, 70, 3779–3784. [Google Scholar] [CrossRef]
- Gupta, V.; Mansingh, A. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 1996, 80, 1063–1073. [Google Scholar] [CrossRef]
- Clearfield, A.; Vaughan, P.A. The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Crystallogr. 1956, 9, 555–558. [Google Scholar] [CrossRef]
- Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl soloutions. J. Mater. Res. 1990, 5, 161. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Liu, A.; Shin, B.; Shan, F. Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications. Ceram. Int. 2015, 41, 13218–13223. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Meng, Y.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Curr. Appl. Phys. 2015, 15, S75–S81. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhang, X.; Jiang, X.; Zhang, Z. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 072112. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Q.; Liu, G.; Shan, F.; Liu, J.; Lee, W.; Shin, B.; Bae, J. Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors. J. Electroceram. 2014, 33, 31–36. [Google Scholar] [CrossRef]
- He, J.; Teren, A.; Jia, C.; Ehrhart, P.; Urban, K.; Waser, R.; Wang, R. Microstructure and interfaces of HfO2 thin films grown on silicon substrates. J. Cryst. Growth 2004, 262, 295–303. [Google Scholar] [CrossRef]
- Modreanu, M.; Sancho-Parramon, J.; Durand, O.; Servet, B.; Stchakovsky, M.; Eypert, C.; Naudin, C.; Knowles, A.; Bridou, F.; Ravet, M.-F. Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl. Surf. Sci. 2006, 253, 328–334. [Google Scholar] [CrossRef]
- He, G.; Liu, M.; Zhu, L.; Chang, M.; Fang, Q.; Zhang, L. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (1 0 0). Surf. Sci. 2005, 576, 67–75. [Google Scholar] [CrossRef]
- Aarik, J.; Aidla, A.; Mändar, H.; Uustare, T.; Kukli, K.; Schuisky, M. Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures. Appl. Surf. Sci. 2001, 173, 15–21. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, Y.B.; Lee, K.H.; Jang, W.S.; Oh, J.Y.; Chae, S.S.; Lee, H.W.; Han, S.W.; Baik, H.K. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 2013, 5, 8067–8075. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Kunitake, T. Solution-based Fabrication of High-κ Gate Dielectrics for Next-Generation Metal-Oxide Semiconductor Transistors. Adv. Mater. 2004, 16, 118–123. [Google Scholar] [CrossRef]
- Jiang, G.X.; Liu, A.; Liu, G.X.; Zhu, C.D.; Meng, Y.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F.K. Solution-processed high-k magnesium oxide for low oxide voltage thin film transistors. Appl. Phys. Lett. 2016, 109, 183508. [Google Scholar] [CrossRef]
- Claeys, C.; Srinivsasm, E.; Misra, D. Impact of the gate dielectric electrode/dielectric interface on the low-frequencey noise of the thin gate oxide n-channel metal-oxide semiconductor field effect transistors. Solid State Electron. 2007, 51, 627. [Google Scholar] [CrossRef]
Sample | Annealing Temperature | µFE [cm2 V−1 s−1] | ION/IOFF | VTH [V] | SS [V dec−1] | Dit [cm−2eV−1] |
---|---|---|---|---|---|---|
In2O3/HfO2 | 450 °C | 5.4 | 103 | −0.06 | 0.59 | 3.7 × 1013 |
In2O3/HfO2 | 500 °C | 9 | 105 | 1.1 | 0.31 | 1.2 × 1013 |
In2O3/HfO2 | 550 °C | 7.8 | 104 | 0.6 | 0.46 | 2.8 × 1013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.; He, G.; Yan, J.; Wang, W. All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials 2023, 13, 694. https://doi.org/10.3390/nano13040694
Alam F, He G, Yan J, Wang W. All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials. 2023; 13(4):694. https://doi.org/10.3390/nano13040694
Chicago/Turabian StyleAlam, Fakhari, Gang He, Jin Yan, and Wenhao Wang. 2023. "All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors" Nanomaterials 13, no. 4: 694. https://doi.org/10.3390/nano13040694
APA StyleAlam, F., He, G., Yan, J., & Wang, W. (2023). All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials, 13(4), 694. https://doi.org/10.3390/nano13040694