Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electron Beam Parameters
3.2. Effect of the Different Electron Beam Energies
3.3. Effect of the Irradiation Spot Spacing
3.4. Excitation Power Dependence of the 535 nm Emission
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dash, A.K.; Mondal, M.; Verma, M.; Kumar, K.S.; Singh, A. Effect of electron-irradiation on layered quantum materials. Bull. Mater. Sci. 2021, 44, 227. [Google Scholar] [CrossRef]
- Zhao, X.; Kotakoski, J.; Meyer, J.C.; Sutter, E.; Sutter, P.; Krasheninnikov, A.V.; Kaiser, U.; Zhou, W. Engineering and modifying two-dimensional materials by electron beams. MRS Bull. 2017, 42, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Krasheninnikov, A.V. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 2020, 5, 1447–1452. [Google Scholar] [CrossRef]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Xu, T.; Lu, J.; Sun, L.; Ni, Z. Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research 2022, 2019, 7507131. [Google Scholar] [CrossRef] [Green Version]
- Melchioni, N.; Fabbri, F.; Tredicucci, A.; Bianco, F. Periodic Structural Defects in Graphene Sheets Engineered via Electron Irradiation. Micromachines 2022, 13, 1666. [Google Scholar] [CrossRef]
- Basta, L.; Moscardini, A.; Veronesi, S.; Bianco, F. Substrate surface effects on electron-irradiated graphene. Surfaces Interfaces 2022, 28, 101694. [Google Scholar] [CrossRef]
- Meyer, J.C.; Eder, F.; Kurasch, S.; Skakalova, V.; Kotakoski, J.; Park, H.J.; Roth, S.; Chuvilin, A.; Eyhusen, S.; Benner, G.; et al. Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Phys. Rev. Lett. 2012, 108, 196102. [Google Scholar] [CrossRef]
- Tian, W.; Li, W.; Yu, W.; Liu, X. A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation. Micromachines 2017, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Qiu, C.; Yu, F.; Yang, H.; Chen, M.; Wang, G.; Sun, L. Modification on Single-Layer Graphene Induced by Low-Energy Electron-Beam Irradiation. J. Phys. Chem. C 2013, 117, 10079–10085. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Balandin, A.A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 13101. [Google Scholar] [CrossRef] [Green Version]
- Selhorst, R.; Susner, M.A.; Muzzio, R.; Kao, I.-H.; Carpena-Núñez, J.; Islam, A.E.; Katoch, J.; Maruyama, B.; Rao, R. Electron-beam chemistry in graphene-Effect of environmental SEM parameters on patterning and defect engineering. Vacuum 2023, 207, 111686. [Google Scholar] [CrossRef]
- Islam, A.E.; Susner, M.A.; Carpena-Núñez, J.; Back, T.C.; Rao, R.; Jiang, J.; Pachter, R.; Tenney, S.A.; Boeckl, J.J.; Maruyama, B. Defect engineering of graphene using electron-beam chemistry with radiolyzed water. Carbon 2020, 166, 446–455. [Google Scholar] [CrossRef]
- Malekpour, H.; Ramnani, P.; Srinivasan, S.; Balasubramanian, G.; Nika, D.L.; Mulchandani, A.; Lake, R.K.; Balandin, A.A. Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 2016, 8, 14608–14616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, Y.-W.; Chang, W.-H.; Xiao, B.-T.; Liang, B.-W.; Chen, J.-H.; Jiang, P.; Li, L.-J.; Su, Y.-W.; Zhong, Y.-L.; Chen, C.-D. Polymer-Free Patterning of Graphene at Sub-10-nm Scale by Low-Energy Repetitive Electron Beam. Small 2014, 10, 4778–4784. [Google Scholar] [CrossRef]
- Basta, L.; Bianco, F.; Moscardini, A.; Fabbri, F.; Bellucci, L.; Tozzini, V.; Heun, S.; Veronesi, S. Deterministic Covalent Organic Functionalization of Monolayer Graphene with 1, 3-Dipolar Cycloaddition Via High Resolution Surface Engineering. arXiv 2022, arXiv:2202.06609. [Google Scholar] [CrossRef]
- Zhang, A.; Wu, Y.; Ke, S.-H.; Feng, Y.P.; Zhang, C. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology 2011, 22, 435702. [Google Scholar] [CrossRef] [Green Version]
- Nourbakhsh, A.; Cantoro, M.; Vosch, T.; Pourtois, G.; Clemente, F.; van der Veen, M.H.; Hofkens, J.; Heyns, M.M.; De Gendt, S.; Sels, B.F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 2010, 21, 435203. [Google Scholar] [CrossRef]
- Yang, N.; Yang, D.; Chen, L.; Liu, D.; Cai, M.; Fan, X. Design and adjustment of the graphene work function via size, modification, defects, and doping: A first-principle theory study. Nanoscale Res. Lett. 2017, 12, 642. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Teweldebrhan, D.; Balandin, A.A. Tuning of Graphene Properties via Controlled Exposure to Electron Beams. IEEE Trans. Nanotechnol. 2011, 10, 865–870. [Google Scholar] [CrossRef]
- Zhou, Y.; Jadwiszczak, J.; Keane, D.; Chen, Y.; Yu, D.; Zhang, H. Programmable graphene doping via electron beam irradiation. Nanoscale 2017, 9, 8657–8664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Yang, G.; Cho, A.; Han, J.W.; Kim, J. Defect-engineered graphene chemical sensors with ultrahigh sensitivity. Phys. Chem. Chem. Phys. 2016, 18, 14198–14204. [Google Scholar] [CrossRef]
- Kislenko, V.A.; Pavlov, S.V.; Kislenko, S.A. Influence of defects in graphene on electron transfer kinetics: The role of the surface electronic structure. Electrochim. Acta 2020, 341, 136011. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091. [Google Scholar] [CrossRef]
- Cho, S.H.; Kwon, S.S.; Yi, J.; Park, W. Il Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors. Nano Converg. 2016, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Jiang, L.; van Geest, E.P.; Lima, L.M.C.; Schneider, G.F. Sensing at the Surface of Graphene Field-Effect Transistors. Adv. Mater. 2017, 29, 1603610. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Shen, Y.; Liu, T.; Wu, T.; Wang, Q.J. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation. Sci. Rep. 2015, 5, 12014. [Google Scholar] [CrossRef] [Green Version]
- Mohammad Haniff, M.A.S.; Muhammad Hafiz, S.; Wahid, K.A.A.; Endut, Z.; Wah Lee, H.; Bien, D.C.S.; Abdul Azid, I.; Abdullah, M.Z.; Ming Huang, N.; Abdul Rahman, S. Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor. Sci. Rep. 2015, 5, 14751. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhang, M.; Dong, L.; Sun, Y.; Su, Y.; Xue, Z.; Di, Z. Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 2019, 9, 75207. [Google Scholar] [CrossRef] [Green Version]
- Acevedo-Del-Castillo, A.; Águila-Toledo, E.; Maldonado-Magnere, S.; Aguilar-Bolados, H. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. Int. J. Mol. Sci. 2021, 22, 9079. [Google Scholar] [CrossRef]
- Alexandrou, K. Ionizing Radiation Effects on Graphene Based Field Effects Transistors. Ph.D. Thesis, Columbia University, New York, NY, USA, 2016. [Google Scholar]
- Song, W.; Lee, S.I.; Kim, Y.; Jung, D.S.; Jung, M.W.; An, K.-S.; Park, C.-Y. Effect of MeV Electron Beam Irradiation on Graphene Grown by Thermal Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2013, 52, 125104. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Dumcenco, D.O.; Huang, Y.-S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396. [Google Scholar] [CrossRef]
- Elibol, K.; Susi, T.; Argentero, G.; Reza Ahmadpour Monazam, M.; Pennycook, T.J.; Meyer, J.C.; Kotakoski, J. Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2. Chem. Mater. 2018, 30, 1230–1238. [Google Scholar] [CrossRef] [Green Version]
- Köster, J.; Ghorbani-Asl, M.; Komsa, H.-P.; Lehnert, T.; Kretschmer, S.; Krasheninnikov, A.V.; Kaiser, U. Defect Agglomeration and Electron-Beam-Induced Local-Phase Transformations in Single-Layer MoTe2. J. Phys. Chem. C 2021, 125, 13601–13609. [Google Scholar] [CrossRef]
- Kretschmer, S.; Komsa, H.-P.; Bøggild, P.; Krasheninnikov, A.V. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations. J. Phys. Chem. Lett. 2017, 8, 3061–3067. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation. 2D Mater. 2016, 3, 025024. [Google Scholar] [CrossRef]
- Moody, G.; Tran, K.; Lu, X.; Autry, T.; Fraser, J.M.; Mirin, R.P.; Yang, L.; Li, X.; Silverman, K.L. Microsecond Valley Lifetime of Defect-Bound Excitons in Monolayer WSe2. Phys. Rev. Lett. 2018, 121, 57403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Zhao, W.; Jiang, J.; Zheng, T.; You, Y.; Lu, J.; Ni, Z. Defect Activated Photoluminescence in WSe2 Monolayer. J. Phys. Chem. C 2017, 121, 12294–12299. [Google Scholar] [CrossRef]
- Dash, A.K.; Swaminathan, H.; Berger, E.; Mondal, M.; Lehenkari, T.; Prasad, P.R.; Watanabe, K.; Taniguchi, T.; Komsa, H.-P.; Singh, A. Controlled defect production in monolayer MoS2 via electron irradiation at ultralow accelerating voltages. arXiv 2022, arXiv:2210.04662. [Google Scholar]
- Parto, K.; Azzam, S.I.; Banerjee, K.; Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 2021, 12, 3585. [Google Scholar] [CrossRef]
- Wu, X.; Gu, Y.; Ge, R.; Serna, M.I.; Huang, Y.; Lee, J.C.; Akinwande, D. Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. NPJ 2D Mater. Appl. 2022, 6, 31. [Google Scholar] [CrossRef]
- Panasci, S.E.; Alessi, A.; Buscarino, G.; Cannas, M.; Gelardi, F.M.; Schilirò, E.; Giannazzo, F.; Agnello, S. Electron Irradiation Effects on Single-Layer MoS2 Obtained by Gold-Assisted Exfoliation. Phys. Status Solidi 2022, 219, 2200096. [Google Scholar] [CrossRef]
- Gale, A.; Li, C.; Chen, Y.; Watanabe, K.; Taniguchi, T.; Aharonovich, I.; Toth, M. Site-Specific Fabrication of Blue Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics 2022, 9, 2170–2177. [Google Scholar] [CrossRef]
- Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J.; et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Tran, T.T.; Elbadawi, C.; Lobo, C.; Wang, X.; Juodkazis, S.; Seniutinas, G.; Toth, M.; Aharonovich, I. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers. ACS Appl. Mater. Interfaces 2016, 8, 29642–29648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngoc My Duong, H.; Nguyen, M.A.P.; Kianinia, M.; Ohshima, T.; Abe, H.; Watanabe, K.; Taniguchi, T.; Edgar, J.H.; Aharonovich, I.; Toth, M. Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces 2018, 10, 24886–24891. [Google Scholar] [CrossRef] [Green Version]
- Murzakhanov, F.F.; Yavkin, B.V.; Mamin, G.V.; Orlinskii, S.B.; Mumdzhi, I.E.; Gracheva, I.N.; Gabbasov, B.F.; Smirnov, A.N.; Davydov, V.Y.; Soltamov, V.A. Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines. Nanomaterials 2021, 11, 1373. [Google Scholar] [CrossRef]
- Bing, D.; Wang, Y.; Bai, J.; Du, R.; Wu, G.; Liu, L. Optical contrast for identifying the thickness of two-dimensional materials. Opt. Commun. 2018, 406, 128–138. [Google Scholar] [CrossRef]
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Geick, R.; Perry, C.H.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. Phys. Rev. 1966, 146, 543–547. [Google Scholar] [CrossRef]
- Kern, G.; Kresse, G.; Hafner, J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 1999, 59, 8551–8559. [Google Scholar] [CrossRef]
- Schué, L.; Stenger, I.; Fossard, F.; Loiseau, A.; Barjon, J. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 2016, 4, 15028. [Google Scholar] [CrossRef] [Green Version]
- Ciampalini, G.; Blaga, C.V.; Tappy, N.; Pezzini, S.; Watanabe, K.; Taniguchi, T.; Bianco, F.; Roddaro, S.; Fontcuberta, I.; Morral, A.; et al. Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D Mater. 2022, 9, 35018. [Google Scholar] [CrossRef]
- Liang, H.; Chen, Y.; Yang, C.; Watanabe, K.; Taniguchi, T.; Eda, G.; Bettiol, A.A. High Sensitivity Spin Defects in hBN Created by High-Energy He Beam Irradiation. Adv. Opt. Mater. 2022, 11, 2201941. [Google Scholar] [CrossRef]
- Gu, R.; Wang, L.; Zhu, H.; Han, S.; Bai, Y.; Zhang, X.; Li, B.; Qin, C.; Liu, J.; Guo, G.; et al. Engineering and Microscopic Mechanism of Quantum Emitters Induced by Heavy Ions in hBN. ACS Photonics 2021, 8, 2912–2922. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Abidi, I.H.; Mendelson, N.; Tran, T.T.; Tyagi, A.; Zhuang, M.; Weng, L.-T.; Özyilmaz, B.; Aharonovich, I.; Toth, M.; Luo, Z. Selective Defect Formation in Hexagonal Boron Nitride. Adv. Opt. Mater. 2019, 7, 1900397. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Deschout, H.; Caneva, S.; Hofmann, S.; Lončarić, I.; Lazić, P.; Radenovic, A. Imaging of Optically Active Defects with Nanometer Resolution. Nano Lett. 2018, 18, 1739–1744. [Google Scholar] [CrossRef]
- Curie, D.; Krogel, J.T.; Cavar, L.; Solanki, A.; Upadhyaya, P.; Li, T.; Pai, Y.-Y.; Chilcote, M.; Iyer, V.; Puretzky, A.; et al. Correlative Nanoscale Imaging of Strained hBN Spin Defects. ACS Appl. Mater. Interfaces 2022, 14, 41361–41368. [Google Scholar] [CrossRef] [PubMed]
- Kozawa, D.; Rajan, A.G.; Li, S.X.; Ichihara, T.; Koman, V.B.; Zeng, Y.; Kuehne, M.; Iyemperumal, S.K.; Silmore, K.S.; Parviz, D. Observation and spectral assignment of a family of hexagonal boron nitride lattice defects. arXiv 2019, arXiv:1909.11738. [Google Scholar]
- Weston, L.; Wickramaratne, D.; Mackoit, M.; Alkauskas, A.; Van de Walle, C.G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 2018, 97, 214104. [Google Scholar] [CrossRef] [Green Version]
- Jaffrennou, P.; Barjon, J.; Lauret, J.-S.; Attal-Trétout, B.; Ducastelle, F.; Loiseau, A. Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy. J. Appl. Phys. 2007, 102, 116102. [Google Scholar] [CrossRef] [Green Version]
- Komsa, H.-P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A.V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 35301. [Google Scholar] [CrossRef] [Green Version]
- Proscia, N.V.; Shotan, Z.; Jayakumar, H.; Reddy, P.; Cohen, C.; Dollar, M.; Alkauskas, A.; Doherty, M.; Meriles, C.A.; Menon, V.M. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 2018, 5, 1128–1134. [Google Scholar] [CrossRef]
- Kotakoski, J.; Jin, C.H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A.V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404. [Google Scholar] [CrossRef] [Green Version]
- Walker II, R.C.; Shi, T.; Silva, E.C.; Jovanovic, I.; Robinson, J.A. Radiation effects on two-dimensional materials. Phys. status solidi 2016, 213, 3065–3077. [Google Scholar] [CrossRef]
- Schindler, S.; Vollnhals, F.; Halbig, C.E.; Marbach, H.; Steinrück, H.-P.; Papp, C.; Eigler, S. Focused electron beam based direct-write fabrication of graphene and amorphous carbon from oxo-functionalized graphene on silicon dioxide. Phys. Chem. Chem. Phys. 2017, 19, 2683–2686. [Google Scholar] [CrossRef] [Green Version]
- Collot, P.; Gautherin, G.; Agius, B.; Rigo, S.; Rochet, F. Low-pressure oxidation of silicon stimulated by low-energy electron bombardment. Philos. Mag. B 1985, 52, 1051–1069. [Google Scholar] [CrossRef]
- Wei, X.; Tang, D.-M.; Chen, Q.; Bando, Y.; Golberg, D. Local Coulomb Explosion of Boron Nitride Nanotubes under Electron Beam Irradiation. ACS Nano 2013, 7, 3491–3497. [Google Scholar] [CrossRef]
- Kretschmer, S.; Lehnert, T.; Kaiser, U.; Krasheninnikov, A.V. Formation of Defects in Two-Dimensional MoS2 in the Transmission Electron Microscope at Electron Energies below the Knock-on Threshold: The Role of Electronic Excitations. Nano Lett. 2020, 20, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Ghaderzadeh, S.; Kretschmer, S.; Ghorbani-Asl, M.; Hlawacek, G.; Krasheninnikov, A.V. Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation. Nanomaterials 2021, 11, 1214. [Google Scholar] [CrossRef]
- Weber, J.; Schmid, W.; Sauer, R. Localized exciton bound to an isoelectronic trap in silicon. Phys. Rev. B 1980, 21, 2401–2414. [Google Scholar] [CrossRef]
- Scarangella, A.; Fabbri, F.; Reitano, R.; Rossi, F.; Priolo, F.; Miritello, M. Visible emission from bismuthdoped yttrium oxide thin films for lighting and display applications. Sci. Rep. 2017, 7, 17325. [Google Scholar] [CrossRef] [Green Version]
- Zacks, E.; Halperin, A. Dependence of the Peak Energy of the Pair-Photoluminescence Band on Excitation Intensity. Phys. Rev. B 1972, 6, 3072–3075. [Google Scholar] [CrossRef]
- Maharjan, N.; Joshi, P.; Rai, R.C.; Nakarmi, M.L. Atomic-like emissions in UV region from hexagonal boron nitride crystal powders. J. Lumin. 2021, 234, 117944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, F.; Corte, E.; Ditalia Tchernij, S.; Forneris, J.; Fabbri, F. Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters. Nanomaterials 2023, 13, 739. https://doi.org/10.3390/nano13040739
Bianco F, Corte E, Ditalia Tchernij S, Forneris J, Fabbri F. Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters. Nanomaterials. 2023; 13(4):739. https://doi.org/10.3390/nano13040739
Chicago/Turabian StyleBianco, Federica, Emilio Corte, Sviatoslav Ditalia Tchernij, Jacopo Forneris, and Filippo Fabbri. 2023. "Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters" Nanomaterials 13, no. 4: 739. https://doi.org/10.3390/nano13040739
APA StyleBianco, F., Corte, E., Ditalia Tchernij, S., Forneris, J., & Fabbri, F. (2023). Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters. Nanomaterials, 13(4), 739. https://doi.org/10.3390/nano13040739