Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Measurements
2.3. Preparation of GO Sheets
2.4. Introduction of RAFT Functionalities onto GO Sheets
2.5. Preparation of GO-MIPs
2.6. Batch Mode Adsorption Studies
2.7. Fabrication Process of GO-MIPs Sensor
2.8. Electrochemical Experiments
3. Results and Discussion
3.1. Characterization of the Obtained GO-MIP Nanocomposites
3.2. Adsorption Behavior of GO-MIPs for 4-MEC
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.2.3. Adsorption Selectivity
3.2.4. Adsorption Repeatability
3.3. Electrochemical Behaviour of GO-MIPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans-Brown, M.; Sedefov, R. New Psychoactive Substances: Driving Greater Complexity into the Drug Problem. Addiction 2017, 112, 36–38. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New Psychoactive Substances: A Review and Updates. Ther. Adv. Psychopharmacol. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Simão, A.Y.; Antunes, M.; Cabral, E.; Oliveira, P.; Rosendo, L.M.; Brinca, A.T.; Alves, E.; Marques, H.; Rosado, T.; Passarinha, L.; et al. An Update on the Implications of New Psychoactive Substances in Public Health. Int. J. Environ. Res. Public Health 2022, 19, 4869. [Google Scholar] [CrossRef]
- UNODC. World Drug Report 2022. 2022. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html (accessed on 22 June 2022).
- Almeida, A.S.; Silva, B.; Pinho, P.G.d.; Remião, F.; Fernandes, C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules 2022, 27, 2057. [Google Scholar] [CrossRef]
- UNODC. Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials. 2020. Available online: https://www.unodc.org/documents/scientific/Recommended_methods_for_the_Identification_and_Analysis_of_Synthetic_Cathinones_in_Seized_Materials-Rev..pdf (accessed on 24 April 2020).
- Jankovics, P.; Varadi, A.; Lohner, S.; Nemeth-Palotas, J.; Koszegi-Szalai, H. Identification and Characterization of the New Designer Drug 4’Methylethcathinone (4-MEC) and Elaboration of a Novel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Screening Method for Seven Different Methcathinone Analogs. Forensic Sci. Int. 2011, 210, 213–220. [Google Scholar] [CrossRef]
- Marinetti, L.J.; Antonides, H.M. Analysis of Synthetic Cathinones Commonly Found in Bath Salts in Human Performance and Postmortem Toxicology: Method Development, Drug Distribution and Interpretation of Results. J. Anal. Toxicol. 2013, 37, 135–146. [Google Scholar] [CrossRef]
- Concheiro, M.; Anizan, S.; Ellefsen, K.; Huestis, M.A. Simultaneous Quantification of 28 Synthetic Cathinones and Metabolites in Urine by Liquid Chromatography-High Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 9437–9448. [Google Scholar] [CrossRef]
- Qian, Z.; Jia, W.; Li, T.; Hua, Z.; Liu, C. Identification of Five Pyrrolidinyl Substituted Cathinones and the Collision-Induced Dissociation of Electrospray-Generated Pyrrolidinyl Substituted Cathinones. Drug Test. Anal. 2017, 9, 778–787. [Google Scholar] [CrossRef]
- Gibbons, S.; Zloh, M. An Analysis of the ‘Legal High’ Mephedrone. Bioorg. Med. Chem. Lett. 2010, 20, 4135–4139. [Google Scholar] [CrossRef]
- Maheux, C.R.; Copeland, C.R. Chemical Analysis of Two New Designer Drugs: Buphedrone and Pentedrone. Drug Test. Anal. 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Braz, A.; Silva, C.S.; Peixoto, A.C.; Pimentel, M.F.; Pereira, G.; Braga, P.C.C.S.; Martini, A.L.; Alcântara, T.L.F. Preliminary Study on the Identification of Synthetic Cathinones in Street Seized Samples by Raman Spectroscopy and Chemometrics. J. Raman Spectrosc. 2021, 52, 901–913. [Google Scholar] [CrossRef]
- Assi, S.; Guirguis, A.; Halsey, S.; Fergus, S.; Stair, J.L. Analysis of ‘Legal High’ Substances and Common Adulterants Using Handheld Spectroscopic Techniques. Anal. Methods 2015, 7, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Mabbott, S.; Correa, E.; Cowcher, D.P.; Allwood, J.W.; Goodacre, R. Optimization of Parameters for the Quantitative Surface-Enhanced Raman Scattering Detection of Mephedrone Using a Fractional Factorial Design and a Portable Raman Spectrometer. Anal. Chem. 2013, 85, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.F.; Ou, F.; Sevo, P.; Petruzzella, M.; de Ridder, R.; van Klinken, A.; Hakkel, K.D.; van Elst, D.M.J.; van Veldhoben, R.; Pagliano, F.; et al. On-site Illicit-Drug Detection with an Integrated Near-Infrared Spectral Sensor: A Proof of Concept. Talanta 2022, 245, 123441. [Google Scholar] [CrossRef]
- Smith, J.P.; Sutcliffe, O.B.; Banks, C.E. An Overview of Recent Developments in the Analytical Detection of New Psychoactive Substances (NPSs). Analyst 2015, 140, 4932–4948. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.P.; Metters, J.P.; Khreit, O.I.G.; Sutcliffe, O.B.; Banks, C.E. Forensic Electrochemistry Applied to the Sensing of New Psychoactive Substances: Electroanalytical Sensing of Synthetic Cathinones and Analytical Validation in the Quantification of Seized Street Samples. Anal. Chem. 2014, 86, 9985–9992. [Google Scholar] [CrossRef]
- Smith, J.P.; Metters, J.P.; Irving, C.; Sutcliffe, O.B.; Banks, C.E. Forensic Electrochemistry: The Electroanalytical Sensing of Synthetic Cathinone-Derivatives and their Accompanying Adulterants in “Legal High” Products. Analyst 2014, 139, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Elbardisy, H.M.; Ferrari, A.G.M.; Foster, C.W.; Sutcliffe, O.B.; Brownson, D.A.C.; Belal, T.S.; Talaat, W.; Daabees, H.G.; Banks, C.E. Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega 2019, 4, 1947–1954. [Google Scholar] [CrossRef]
- Arrieiro, M.O.B.; Arantes, L.C.; Moreira, D.A.R.; Pimentel, D.M.; Lima, C.D.; Costa, L.M.F.; Verly, R.M.; dos Santos, W.T.P. Electrochemical Detection of Eutylone Using Screen-Printed Electrodes: Rapid and Simple Screening Method for Application in Forensic Samples. Electrochim. Acta 2022, 412, 140106. [Google Scholar] [CrossRef]
- Jamieson, O.; Soares, T.C.C.; de Faria, B.A.; Hudson, A.; Mecozzi, F.; Rowley-Neale, S.J.; Banks, C.E.; Gruber, J.; Novakovic, K.; Peeters, M.; et al. Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Lowdon, J.W.; Alkirkit, S.M.O.; Mewis, R.E.; Fulton, D.; Banks, C.E.; Sutcliffffe, O.B. Engineering Molecularly Imprinted Polymers (MIPs) for the Selective Extraction and Quantifification of the Novel Psychoactive Substance (NPS) Methoxphenidine and its Regioisomers. Analyst 2018, 143, 2002–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfadil, D.; Lamaoui, A.; Pelle, F.D.; Amine, A.; Compagnone, D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, S.; Dhodapkar, R. Advances in Fabrication of Molecularly Imprinted Electrochemical Sensors for Detection of Contaminants and Toxicants. Environ. Res. 2022, 212, 113359. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Su, H.J.; Tan, T.W. Synthesis of Ion-Imprinted Chitosan-TiO2 Adsorbent and Its Multi-Functional Performances. Biochem. Eng. J. 2008, 38, 212–218. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Z.H.; Fu, L.; Shi, F.; Ma, H.W.; Ozaki, Y.; Zhang, X. Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir 2008, 24, 11988–11994. [Google Scholar] [CrossRef]
- Maduraiveerana, G.; Sasidharana, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Pompeu Prado Moreira, L.F.; Buffon, E.; Stradiotto, N.R. Electrochemical Sensor Based on Reduced Graphene Oxide and Molecularly Imprinted Poly(Phenol) for D-Xylose Determination. Talanta 2020, 208, 120379. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A Graphene Oxide-Based Molecularly Imprinted Polymer Platform for Detecting Endocrine Disrupting Chemicals. Carbon 2010, 48, 3427–3433. [Google Scholar] [CrossRef]
- Martínez, I.V.; Ek, J.I.; Ahn, E.C.; Sustaita, A.O. Molecularly Imprinted Polymers via Reversible Addition-Fragmentation Chain-Transfer Synthesis in Sensing and Environmental Applications. RSC Adv. 2022, 12, 9186–9201. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, Y.; Liu, W.B.; Li, Y.J.; Huang, X.Y. Preparation of Graphene/Poly(2-Acryloxyethyl Ferrocenecarboxylate) Nanocomposite via a “Grafting-onto” Strategy. Polym. Chem. 2018, 9, 184–192. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, G.L.; Huang, X.Y.; Li, Y.; Cao, F.Q.; Chen, H.; Liu, W.B. Thermo-Responsive Graphene Oxide/Poly(Ethyl Ethylene Phosphate) Nanocomposite via Ring Opening Polymerization. Nanomaterials 2019, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A. Preparation of Molecularly Imprinted Polymer Coated Magnetic Multi-Walled Carbon Nanotubes for Selective Removal of Dibenzothiophene. Mater. Sci. Semicond. Process. 2015, 40, 501–507. [Google Scholar] [CrossRef]
- Pan, J.; Yao, H.; Guan, W.; Ou, H.; Huo, P.; Wang, X.; Zou, X.; Li, C. Selective Adsorption of 2,6-Dichlorophenol by Surface Imprinted Polymers Using Polyaniline/Silica Gel Composites as Functional Support: Equilibrium, Kinetics, Thermodynamics Modeling. Chem. Eng. J. 2011, 172, 847–855. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Li, B. Magnetic Molecular Imprinting Polymers Based on Three-Dimensional (3D) Graphene-Carbon Nanotube Hybrid Composites for Analysis of Melamine in Milk Powder. Food Chem. 2018, 255, 226–234. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Liu, Y.; Zhang, C.; Zhou, Y. Magnetic-Graphene Based Molecularly Imprinted Polymer Nanocomposite for the Recognition of Bovine Hemoglobin. Talanta 2015, 144, 411–419. [Google Scholar] [CrossRef]
- An, F.Q.; Gao, B.J. Adsorption Characteristics of Cr(III) Ionic Imprinting Polyamine on Silica Gel Surface. Desalination 2009, 249, 1390–1396. [Google Scholar] [CrossRef]
- Wu, Q.; Li, M.; Huang, Z.; Shao, Y.; Bai, L.; Zhou, L. Well-Defined Nanostructured Core-Shell Magnetic Surface Imprinted Polymers (Fe3O4@SiO2@MIPs) for Effective Extraction of Trace Tetrabromobisphenol A from Water. J. Ind. Eng. Chem. 2018, 60, 268–278. [Google Scholar] [CrossRef]
- Mckay, G.; Blair, H.S.; Gardner, J.R. Adsorption of Dyes on Chitin-1: Equilibrium Studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Kuang, Y. Electrochemical Determination of Bisphenol A in Plastic Bottled Drinking Water and Canned Beverages Using A Molecularly Imprinted Chitosan-Graphene Composite Film Modified Electrode. Food Chem. 2014, 157, 490–497. [Google Scholar] [CrossRef]
Samples | Qe,exp (mg g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
k1 | Qe (mg g−1) | R2 | k2 | Qe (mg g−1) | R2 | ||
GO-MIPs | 22.36 | 0.0285 | 18.690 | 0.9393 | 0.00159 | 26.455 | 0.9927 |
GO-NIPs | 7.39 | 0.0261 | 4.759 | 0.9805 | 0.00789 | 8.157 | 0.9934 |
Samples | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg g−1) | KL (L mg−1) | R2 | KF | n | R2 | |
GO-MIPs | 28.27 | 0.07989 | 0.9772 | 3.5323 | 2.0306 | 0.9842 |
GO-NIPs | 11.02 | 0.03797 | 0.9768 | 0.6024 | 1.5356 | 0.9489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wu, F.; Huang, X.; He, S.; Han, Q.; Zhang, Z.; Liu, W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials 2023, 13, 751. https://doi.org/10.3390/nano13040751
Jiang X, Wu F, Huang X, He S, Han Q, Zhang Z, Liu W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials. 2023; 13(4):751. https://doi.org/10.3390/nano13040751
Chicago/Turabian StyleJiang, Xue, Fangsheng Wu, Xiaoyu Huang, Shan He, Qiaoying Han, Zihua Zhang, and Wenbin Liu. 2023. "Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances" Nanomaterials 13, no. 4: 751. https://doi.org/10.3390/nano13040751
APA StyleJiang, X., Wu, F., Huang, X., He, S., Han, Q., Zhang, Z., & Liu, W. (2023). Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials, 13(4), 751. https://doi.org/10.3390/nano13040751