Multifunctional Cu-Se Alloy Core Fibers and Micro–Nano Tapers
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G.J. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422. [Google Scholar] [CrossRef]
- Chen, W.S.; Stewart, J.M.; Mickelsen, R.A. Polycrystalline thin-film Cu2-xSe/CdS solar cell. Appl. Phys. Lett. 1985, 46, 1095–1097. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, F.; Wu, Y.; Yang, L.; Zhang, F.; Huang, J. Template synthesis of Cu2-xSe nanoboxes and their gas sensing properties. CrystEngComm 2012, 14, 3528–3533. [Google Scholar] [CrossRef]
- Korzhuev, M.A. Dufour effect in superionic copper selenide. Phys. Solid State 1998, 40, 217–219. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Yang, Z.; Ding, S.; Zeng, C.; Chen, L.; Wang, Q.; Yang, S. Large-Scale synthesis of long crystalline Cu2-xSe nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing. Adv. Funct. Mater. 2009, 19, 1759–1766. [Google Scholar] [CrossRef]
- Jin, C.; Shevchenko, N.A.; Li, Z.; Popov, S.; Chen, Y.; Xu, T. Nonlinear coherent optical systems in the presence of equalization enhanced phase noise. J. Light. Technol. 2021, 39, 4646–4653. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Liu, C.; Wei, M.; Xu, X. CuO-modified PtSe2 monolayer as a promising sensing candidate toward C2H2 and C2H4 in oil-immersed transformers: A density functional theory study. ACS Omega 2022, 7, 45590–45597. [Google Scholar] [CrossRef]
- Stevels, A.L.N.; Jellinek, F. Phase transitions in copper chalcogenides: I. The copper-selenium system. Recl. Des Trav. Chim. Des Pays-Bas 1971, 90, 273–283. [Google Scholar] [CrossRef]
- Hermann, A.M.; Fabick, L. Research on polycrystalline thin-film photovoltaic devices. J. Cryst. Growth 1983, 61, 658–664. [Google Scholar] [CrossRef]
- Saitoh, T.; Matsubara, S.; Minagawa, S. Polycrystalline indium phosphide solar cells fabricated on molybdenum substrates. Jpn. J. Appl. Phys. 1977, 16, 807. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhou, B.; Law, W.C.; Cartwright, A.N.; Swihart, M.T. Size-controlled synthesis of Cu2-xE (E= S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater. 2013, 23, 1256–1264. [Google Scholar] [CrossRef]
- Riha, S.C.; Johnson, D.C.; Prieto, A.L. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. J. Am. Chem. Soc. 2010, 133, 1383–1390. [Google Scholar] [CrossRef]
- Dorfs, D.; Hartling, T.; Miszta, K.; Bigall, N.C.; Kim, M.R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2–xSe nanocrystals. J. Am. Chem. Soc. 2011, 133, 11175–11180. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Fang, C.X.; Tian, Y.P.; Zhu, K.R.; Jin, B.K.; Shen, Y.H.; Yang, J.X. Synthesis and characterization of hexagonal CuSe nanotubes by templating against trigonal Se nanotubes. Cryst. Growth Des. 2006, 6, 2809–2813. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.B.; Chen, X.; Luan, C.-Y.; Zhang, W.-F.; Zapien, J.A.; Zhang, W.-J.; Kwong, H.-L.; Meng, X.-M.; Lee, S.-T.; et al. Synthesis of homogeneously alloyed Cu2-x(SySe1-y) nanowire bundles with tunable compositions and bandgaps. Adv. Funct. Mater. 2010, 20, 4190–4195. [Google Scholar] [CrossRef]
- Kou, H.; Jiang, Y.; Li, J.; Yu, S.; Wang, C. Enhanced photoelectric performance of Cu2-xSe nanostructure by doping with In3+. J. Mater. Chem. 2012, 22, 1950–1956. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, X.; Lu, P.; Shi, X.; Xu, F.; He, Y.; Tang, Y.; Bai, S.; Zhang, W.; Chen, L.; et al. Ultrahigh Thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx. Adv. Mater. 2013, 25, 6607–6612. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Tang, G.; Wang, H.; Zhang, T.; Zhang, P.; Han, B.; Yang, M.; Zhang, H.; Chen, Y.; Chen, J.; et al. enhanced thermoelectric properties of Bi2Te3-based micro–nano fibers via thermal drawing and interfacial engineering. Adv. Mater. 2022, 34, 2202942. [Google Scholar] [CrossRef]
- Sun, M.; Tang, G.; Huang, B.; Chen, Z.; Zhao, Y.-J.; Wang, H.; Zhao, Z.; Chen, D.; Qian, Q.; Yang, Z. Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers. J. Mater. 2020, 6, 467. [Google Scholar]
- Sun, M.; Qian, Q.; Tang, G.; Liu, W.; Qian, G.; Shi, Z.; Huang, K.; Chen, D.; Xu, S.; Yang, Z. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL Mater. 2018, 6, 036103. [Google Scholar] [CrossRef] [Green Version]
- Monjezi, F.; Jamali-Sheini, F.; Yousefi, R. Pb-doped Cu3Se2 nanosheets: Electrochemical synthesis, structural features and optoelectronic properties. Sol. Energy 2018, 171, 508–518. [Google Scholar] [CrossRef]
- Gosavi, S.R.; Deshpande, N.G.; Gudage, Y.G.; Sharma, R. Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature. J. Alloy. Compd. 2008, 448, 344–348. [Google Scholar] [CrossRef]
- Qiao, L.N.; Wang, H.C.; Shen, Y.; Lin, Y.H.; Nan, C.W. Enhanced photocatalytic performance under visible and near-infrared irradiation of Cu1.8Se/Cu3Se2 composite via a phase junction. Nanomaterials 2017, 7, 19. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Liu, Y.; Chen, D.; Qian, Q. Multifunctional Cu-Se Alloy Core Fibers and Micro–Nano Tapers. Nanomaterials 2023, 13, 773. https://doi.org/10.3390/nano13040773
Sun M, Liu Y, Chen D, Qian Q. Multifunctional Cu-Se Alloy Core Fibers and Micro–Nano Tapers. Nanomaterials. 2023; 13(4):773. https://doi.org/10.3390/nano13040773
Chicago/Turabian StyleSun, Min, Yu Liu, Dongdan Chen, and Qi Qian. 2023. "Multifunctional Cu-Se Alloy Core Fibers and Micro–Nano Tapers" Nanomaterials 13, no. 4: 773. https://doi.org/10.3390/nano13040773
APA StyleSun, M., Liu, Y., Chen, D., & Qian, Q. (2023). Multifunctional Cu-Se Alloy Core Fibers and Micro–Nano Tapers. Nanomaterials, 13(4), 773. https://doi.org/10.3390/nano13040773