A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of in-situ rGO/AgNWs Hybrid Paper
2.3. Preparation of Mixed rGO/AgNWs Paper (MGAP)
2.4. Characterizations
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, Q.; Yao, X.; Wang, W.; Liu, Y.; Wong, C.P. A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials. Acs Nano 2011, 5, 2392–2401. [Google Scholar] [CrossRef]
- Lv, P.; Tan, X.W.; Yu, K.H.; Zheng, R.L.; Zheng, J.J.; Wei, W. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties. Carbon 2016, 99, 222–228. [Google Scholar] [CrossRef]
- Dai, W.; Ren, X.-J.; Yan, Q.; Wang, S.; Yang, M.; Lv, L.; Ying, J.; Chen, L.; Tao, P.; Sun, L.; et al. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. Nano-Micro Lett. 2022, 15, 9. [Google Scholar] [CrossRef]
- Dai, W.; Lv, L.; Ma, T.; Wang, X.; Lin, C. Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. Adv. Sci. 2021, 8, 2003734. [Google Scholar] [CrossRef]
- Hou, H.; Dai, W.; Yan, Q.; Lv, L.; Alam, F.E.; Yang, M.; Yao, Y.; Zeng, X.; Xu, J.-B.; Yu, J.; et al. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 2018, 6, 12091–12097. [Google Scholar] [CrossRef]
- Chen, J.; Walther, J.H.; Koumoutsakos, P. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces. Adv. Funct. Mater. 2016, 25, 7539–7545. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Zhao, Y.; Zhang, Y.; Ren, Y.; Bai, S.L. Three-Dimensional Graphene Foam-Filled Elastomer Composites with High Thermal and Mechanical Properties. Acs Appl. Mater. Interfaces 2017, 9, 26447. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, H.; Gao, C. Perspective: Graphene aerogel goes to superelasticity and ultraflyweight. APL Mater. 2013, 1, 666. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Jing, D.; Chao, X. Thermal conductivity epoxy resin composites filled with boron nitride. Polym. Adv. Technol. 2012, 23, 1025–1028. [Google Scholar] [CrossRef]
- Kim, H.S.; Bae, H.S.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 2016, 6, 26825. [Google Scholar] [CrossRef] [Green Version]
- Lian, G.; Tuan, C.C.; Li, L.; Jiao, S.; Wang, Q.; Moon, K.S.; Cui, D.; Wong, C.P. Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading. Chem. Mater. 2016, 28, 6096–6104. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X.; Wang, T.; Zhang, H.; Li, Y.; Bao, H.; Chen, M.; Wu, L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. Nano-Micro Lett. 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, Z.; Sun, H.; Dai, D.; Cui, J.; Li, M.; Xu, Y.; Xu, M.; Du, Y.; Jiang, N.; et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon 2018, 129, 456–461. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh Thermal Conductive yet Superflexible Graphene Films. Adv. Mater. 2017, 29, 1700589. [Google Scholar] [CrossRef]
- Lv, L.; Dai, W.; Yu, J.; Jiang, N.; Lin, C.T. A mini review: Application of graphene paper in thermal interface materials. New Carbon Mater. 2021, 36, 930–938. [Google Scholar] [CrossRef]
- Bai, H.; Xue, C.; Lyu, J.; Li, J.; Chen, G.; Yu, J.; Lin, C.; Lv, D.; Xiong, L. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface. Compos. Part A Appl. Sci. Manuf. 2018, 106, 42–51. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Am. Chem. Soc. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Shahil, K.; Balandin, A.A. Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yan, Q.; Lv, L.; Tan, X.; Dai, W. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem. Eng. J. 2021, 419, 129609. [Google Scholar] [CrossRef]
- Dai, W.; Le, L.; Lu, J.; Hou, H.; Lin, C.-T. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. ACS Nano 2019, 13, 1547–1554. [Google Scholar] [CrossRef]
- Coloyan, G.; Cultrara, N.; Shi, L. Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane. Appl. Phys. Lett. 2016, 109, 2898. [Google Scholar] [CrossRef]
- Uematsu, Y.; Terada, T.; Sato, K.; Ishibe, T.; Nakamura, Y. Low thermal conductivity in single crystalline epitaxial germanane films. Appl. Phys. Express 2020, 13, 055503. [Google Scholar] [CrossRef]
- Xiang, J.; Drzal, L.T. Electron and Phonon Transport in Au Nanoparticle Decorated Graphene Nanoplatelet Nanostructured Paper. ACS Appl. Mater. Interfaces 2011, 3, 1325–1332. [Google Scholar] [CrossRef]
- Huang, S.Y.; Kai, Z.; Yuen, M.; Fu, X.Z.; Wong, C.P. Graphene-Ag composite film as thermal interface materials. In Proceedings of the 2015 16th International Conference on Electronic Packaging Technology (ICEPT), Changsha, China, 11–14 August 2015. [Google Scholar]
- Qiu, L.; Zou, H.; Wang, X.; Feng, Y.; Li, Q. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 2019, 141, 497–505. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Alam, M.M.; Yu, D.; Qian, J. Incorporating Ag Nanowires into Graphene Nanosheets for Enhanced Thermal Conductivity: Implications for Thermal Management. ACS Appl. Nano Mater. 2020, 3, 6061–6070. [Google Scholar] [CrossRef]
- Fan, Z.; Hua, Z. Crystal Phase-Controlled Synthesis, Properties and Applications of Noble Metal Nanomaterials. Chem. Soc. Rev. 2015, 45, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Lee, Y.H. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- Ge, Y.; Duan, X.; Meng, Z.; Lin, M.; Hu, J.; Wei, H.; Duan, X. Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors. J. Am. Chem. Soc. 2017, 140, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Z.; Cao, Z.; Zhang, H.B.; Liu, J.; Yu, Z.Z. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chem. Commun. 2011, 47, 3084–3086. [Google Scholar] [CrossRef]
- Jeong, H.K.; Lee, Y.P.; Lahaye, R.; Park, M.H.; An, K.H.; Kim, I.J.; Yang, C.W.; Park, C.Y.; Ruoff, R.S.; Lee, Y.H. Evidence of Graphitic AB Stacking Order of Graphite Oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366. [Google Scholar] [CrossRef]
- Xiang, J.; Drzal, L.T. Thermal conductivity of exfoliated graphite nanoplatelet. Carbon 2011, 49, 773–778. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Luo, J.; Gong, W.; Li, C.; Li, Q.; Zhang, K.; Hu, M.; Yao, Y. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Compos. Part A Appl. Sci. Manuf. 2017, 102, 1–8. [Google Scholar] [CrossRef]
- Nan, B.; Wu, K.; Qu, Z.; Xiao, L.; Lu, M. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond. Carbon 2020, 161, 132–145. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhang, K.; Yuen, M.M.; Fu, X.Z.; Sun, R.; Wong, C.P. Facile synthesis of flexible graphene-silver composite papers with promising electrical and thermal conductivity performances. RSC Adv. 2014, 4, 34156–34160. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, G.; Jiang, C.; Ju, S.; Jiang, D. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader. Small 2015, 11, 6197–6204. [Google Scholar] [CrossRef] [PubMed]
- Hansson, J.; Nilsson, T.; Ye, L.; Liu, J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev. 2018, 63, 22–45. [Google Scholar] [CrossRef]
Sample | TD mm2 s−1 | Density g cm−3 | Cp J g−1 K−1 | TC W m−1 K−1 |
---|---|---|---|---|
GP | 14.8 | 0.33 | 0.754 | 3.7 |
5.88 | 0.79 | 3.5 | ||
IGAP | 18 | 0.49 | 0.447 | 3.97 |
14.2 | 1.18 | 7.48 |
Method | Name | TC W m−1 K−1 | Ref. |
---|---|---|---|
Filtration | Exfoliated graphite nanoplatelet paper Carbon nanotube–graphene hybrid paper Nanodiamond decorated functionalized graphene oxide paper Hierarchically structured graphene paper | 1.3 0.2 0.3 12.6 | [32] [33] [34] [19] |
In-situ growth | Au NPs decorated graphene nanoplatelet paper Ag nanoparticle-intercalated graphene paper Carbon nanoring–graphene hybrid paper Graphene hybrid paper | 1.6 3.3 5.8 17.6 | [23] [35] [36] [20] |
In-situ growth + Filtration | Graphene/Ag Nanowires paper | 7.48 | This work |
Materials | Size cm3 | TC W m−1 K−1 | Cp J g−1 K−1 | |
---|---|---|---|---|
Heat sink Heater | Aluminum alloy | Φ1*0.2 | 205 | 0.88 |
Alumina | 10*4.5*1.5 | 27 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, L.; Ying, J.; Chen, L.; Tao, P.; Sun, L.; Yang, K.; Fu, L.; Yu, J.; Yan, Q.; Dai, W.; et al. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Nanomaterials 2023, 13, 793. https://doi.org/10.3390/nano13050793
Lv L, Ying J, Chen L, Tao P, Sun L, Yang K, Fu L, Yu J, Yan Q, Dai W, et al. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Nanomaterials. 2023; 13(5):793. https://doi.org/10.3390/nano13050793
Chicago/Turabian StyleLv, Le, Junfeng Ying, Lu Chen, Peidi Tao, Liwen Sun, Ke Yang, Li Fu, Jinhong Yu, Qingwei Yan, Wen Dai, and et al. 2023. "A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material" Nanomaterials 13, no. 5: 793. https://doi.org/10.3390/nano13050793
APA StyleLv, L., Ying, J., Chen, L., Tao, P., Sun, L., Yang, K., Fu, L., Yu, J., Yan, Q., Dai, W., Jiang, N., & Lin, C. -T. (2023). A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. Nanomaterials, 13(5), 793. https://doi.org/10.3390/nano13050793