Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospinning Process
2.3. Electrospun Films
2.4. Film Characterization
2.4.1. Morphology
2.4.2. Transparency
2.4.3. Color
2.4.4. X-ray Diffraction Analysis
2.4.5. Attenuated Total Reflection—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4.6. Thermal Analysis
2.4.7. Oxygen Scavenging Capacity
2.4.8. Mechanical Test
2.4.9. Barrier Properties
2.5. Antimicrobial Activity
2.6. Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization
3.2. Optical Characterization of the Electrospun Films
3.3. X-ray-Diffraction (XRD) of the Electrospun Fibers
3.4. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) of the Electrospun Fibers
3.5. Thermal Properties
3.5.1. Differential Scanning Calorimetry (DSC) of the Electrospun Fibers
3.5.2. Thermogravimetric Characterization of the Electrospun Fibers
3.6. Oxygen Scavenging Capacity of Electrospun Fibers and Films
3.7. Mechanical Properties of the Electrospun Films
3.8. Barrier Properties of the Electrospun Films
3.9. Antimicrobial Activity of the Electrospun Films
3.10. Antioxidant Assay of the Electrospun Fibers and Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef] [Green Version]
- Byun, Y.; Darby, D.; Cooksey, K.; Dawson, P.; Whiteside, S. Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chem. 2011, 124, 615–619. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 2018, 16, 523–538. [Google Scholar] [CrossRef]
- Wang, C.; Gong, C.; Qin, Y.; Hu, Y.; Jiao, A.; Jin, Z.; Qiu, C.; Wang, J. Bioactive and functional biodegradable packaging films reinforced with nanoparticles. J. Food Eng. 2022, 312, 110752. [Google Scholar] [CrossRef]
- Wang, J.; Euring, M.; Ostendorf, K.; Zhang, K. Biobased materials for food packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Dutt Tripathi, A.; Paul, V.; Agarwal, A.; Sharma, R.; Hashempour-Baltork, F.; Rashidi, L.; Khosravi Darani, K. Production of polyhydroxyalkanoates using dairy processing waste—A review. Bioresour. Technol. 2021, 326, 124735. [Google Scholar] [CrossRef] [PubMed]
- Torres-Giner, S.; Montanes, N.; Fombuena, V.; Boronat, T.; Sanchez-Nacher, L. Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Adv. Polym. Technol. 2018, 37, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, G.; Calamak, S.; Ulubayram, K.; Guven, E. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol. 2018, 43, 185–193. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, T.W.; Kim, M.K.; Lee, S.Y.; Lim, S.-C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 2012, 30, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Reddy, C.S.K.; Ghai, R.; Rashmi; Kalia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef] [PubMed]
- McChalicher, C.W.J.; Srienc, F. Investigating the structure–property relationship of bacterial PHA block copolymers. J. Biotechnol. 2007, 132, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Zhuikov, V.A.; Zhuikova, Y.V.; Makhina, T.K.; Myshkina, V.L.; Rusakov, A.; Useinov, A.; Voinova, V.V.; Bonartseva, G.A.; Berlin, A.A.; Bonartsev, A.P.; et al. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers 2020, 12, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, M.; Floros, J.D. Active Food Packaging Technologies. Crit. Rev. Food Sci. Nutr. 2004, 44, 185–193. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Prieto, C.; Lagaron, J.M. Nanomaterials to Enhance Food Quality, Safety, and Health Impact. Nanomaterials 2020, 10, 941. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Rüegg, N.; Lohwasser, W. Development of Palladium-based Oxygen Scavenger: Optimization of Substrate and Palladium Layer Thickness. Packag. Technol. Sci. 2015, 28, 710–718. [Google Scholar] [CrossRef]
- Sängerlaub, S.; Witzgall, S.; Müller, K.; Wiegert, T.; Pecyna, M.J. Palladium-based oxygen scavenger for food packaging: Choosing optimal hydrogen partial pressure. Food Packag. Shelf Life 2021, 28, 100666. [Google Scholar] [CrossRef]
- Dey, A.; Neogi, S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- Calderon V., S.; Gomes, B.; Ferreira, P.J.; Carvalho, S. Zinc nanostructures for oxygen scavenging. Nanoscale 2017, 9, 5254–5262. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Kahya, N.; Adımcılar, V.; Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Erim, F.B. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur. Polym. J. 2020, 133, 109777. [Google Scholar] [CrossRef]
- Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, S.R.V.S.; Balaji, K.; Pandey, S.; Rana, S. Chapter 4—Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Karak, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–144. [Google Scholar] [CrossRef]
- Singh, K.R.B.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv. 2020, 10, 27194–27214. [Google Scholar] [CrossRef] [PubMed]
- Sarif, M.; Jegel, O.; Gazanis, A.; Hartmann, J.; Plana-Ruiz, S.; Hilgert, J.; Frerichs, H.; Viel, M.; Panthöfer, M.; Kolb, U.; et al. High-throughput synthesis of CeO2 nanoparticles for transparent nanocomposites repelling Pseudomonas aeruginosa biofilms. Sci. Rep. 2022, 12, 3935. [Google Scholar] [CrossRef] [PubMed]
- Nallappan, M.; Gopalan, M. Fabrication of CeO2/PANI composites for high energy density supercapacitors. Mater. Res. Bull. 2018, 106, 357–364. [Google Scholar] [CrossRef]
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63–94. [Google Scholar] [CrossRef]
- Rossinyol, E.; Arbiol, J.; Peiró, F.; Cornet, A.; Morante, J.R.; Tian, B.; Bo, T.; Zhao, D. Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens. Actuators B Chem. 2005, 109, 57–63. [Google Scholar] [CrossRef]
- Feng, X.; Sayle, D.; Wang, Z.; Paras, M.; Santora, B.; Sutorik, A.; Sayle, T.; Yang, Y.; Ding, Y.; Wang, X.; et al. Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres. Science 2006, 312, 1504–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, D.L.; Russo, A.E.; Carro, R.V.; Stephens, M.A.; LePage, A.R.; Spalding, T.C.; Petersen, E.L.; Seal, S. Nanoscale Additives Tailor Energetic Materials. Nano Lett. 2007, 7, 2157–2161. [Google Scholar] [CrossRef]
- Atisme, T.B.; Yu, C.-Y.; Tseng, E.N.; Chen, Y.-C.; Shu, P.-K.; Chen, S.-Y. Interface Interactions in Conjugated Polymer Composite with Metal Oxide Nanoparticles. Nanomaterials 2019, 9, 1534. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.M.; Alminderej, F.M.; Mohamed, A.M.A. Superhydrophobic and Corrosion Behaviour of PVDF-CeO2 Composite Coatings. Materials 2022, 15, 8674. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Fabra, M.J.; Castro-Mayorga, J.L.; Bourbon, A.I.; Pastrana, L.M.; Vicente, A.A.; Lagaron, J.M. Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food Bioprocess Technol. 2016, 9, 1874–1884. [Google Scholar] [CrossRef] [Green Version]
- Cherpinski, A.; Gozutok, M.; Sasmazel, H.T.; Torres-Giner, S.; Lagaron, J.M. Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials 2018, 8, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherpinski, A.; Szewczyk, P.K.; Gruszczyński, A.; Stachewicz, U.; Lagaron, J.M. Oxygen-Scavenging Multilayered Biopapers Containing Palladium Nanoparticles Obtained by the Electrospinning Coating Technique. Nanomaterials 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javadi, F.; Taghavizadeh Yazdi, M.E.; Baghani, M.; Es-haghi, A. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater. Res. Express 2019, 6, 065408. [Google Scholar] [CrossRef]
- Integradated Laboratory Systems Inc. Chemical Information Profile for Ceric Oxide. Supporting Nomination for Toxicological Evaluation by the National Toxicology Program; National Institute of Environmental Health Sciences: Research Triangle Park, NC, USA, 2006. [Google Scholar]
- Ismail, R.; Baaity, Z.; Csóka, I. Regulatory status quo and prospects for biosurfactants in pharmaceutical applications. Drug Discov. Today 2021, 26, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Abou-Zeid, R.E.; Diab, M.A.; Mohamed, S.A.A.; Salama, A.; Aljohani, H.A.; Shoueir, K.R. Surfactant-Assisted Poly(lactic acid)/Cellulose Nanocrystal Bionanocomposite for Potential Application in Paper Coating. J. Renew. Mater. 2018, 6, 394. [Google Scholar] [CrossRef]
- Rittirong, K.; Uasopon, S.; Prachayawasin, P.; Euaphantasate, N.; Aiempanakit, K.; Ummartyotin, S. CTAB as a soft template for modified clay as filler in active packaging. Data Brief 2015, 3, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Bezerra Lima, E.M.; Middea, A.; Marconcini, J.M.; Corrêa, A.C.; Fernandes Pereira, J.; Vieira Guimarães, A.; Firmino de Lima, J.; Ramos dos Anjos, M.; Miranda de Castro, I.; Nunes Oliveira, R.; et al. Biodegradable PLA based nanocomposites for packaging applications: The effects of organo-modified bentonite concentration. J. Appl. Polym. Sci. 2021, 138, 50907. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Torres-Giner, S.; Enescu, D.; Cabedo, L.; Cerqueira, M.A.; Pastrana, L.M.; Lagaron, J.M. Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials 2020, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Lopez, K.J.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Escuin, J.M.; Bourbon, A.I.; Cabedo, L.; Nevo, Y.; Cerqueira, M.A.; Lagaron, J.M. Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials 2020, 10, 2356. [Google Scholar] [CrossRef]
- Agüero, A.; Morcillo, M.d.C.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Lascano, D.; Torres-Giner, S.; Fenollar, O. Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers 2019, 11, 1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials 2019, 9, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salarizadeh, P.; Askari, M.B.; Beydaghi, H.; Rastgoo-Deylami, M.; Rozati, S.M. Hybrid of cerium dioxide nanoparticles/reduced graphene oxide as an electrode material for supercapacitor applications. J. Phys. Chem. Solids 2021, 159, 110284. [Google Scholar] [CrossRef]
- Sainudeen, S.S.; Asok, L.B.; Varghese, A.; Nair, A.S.; Krishnan, G. Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Adv. 2017, 7, 35160–35168. [Google Scholar] [CrossRef] [Green Version]
- Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Lopez, K.J.; Cabedo, L.; Lagaron, J.M.; Torres-Giner, S. Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Front. Nutr. 2020, 7, 140. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Fabra, M.J.; Cabedo, L.; Lagaron, J.M. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Salević, A.; Prieto, C.; Cabedo, L.; Nedović, V.; Lagaron, J.M. Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Sooch, B.S.; Mann, M.K. Nanoreinforced biodegradable gelatin based active food packaging film for the enhancement of shelf life of tomatoes (Solanum lycopersicum L.). Food Control 2021, 130, 108322. [Google Scholar] [CrossRef]
- Moustafa, H.; Karmalawi, A.M.; Youssef, A.M. Development of dapsone-capped TiO2 hybrid nanocomposites and their effects on the UV radiation, mechanical, thermal properties and antibacterial activity of PVA bionanocomposites. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100482. [Google Scholar] [CrossRef]
- Wang, M.; Shen, M.; Jin, X.; Tian, J.; Shao, Y.; Zhang, L.; Li, Y.; Shi, J. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem. Eng. J. 2022, 427, 130987. [Google Scholar] [CrossRef]
- Youn, D.H.; Tran, N.M.; Kim, B.J.; Kim, Y.; Jeon, J.P.; Yoo, H. Shape effect of cerium oxide nanoparticles on mild traumatic brain injury. Sci. Rep. 2021, 11, 15571. [Google Scholar] [CrossRef] [PubMed]
- Bossu, J.; Le Moigne, N.; Dieudonné-George, P.; Dumazert, L.; Guillard, V.; Angellier-Coussy, H. Impact of the processing temperature on the crystallization behavior and mechanical properties of poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)]. Polymer 2021, 229, 123987. [Google Scholar] [CrossRef]
- Škrbić, Z.; Divjaković, V. Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer 1996, 37, 505–507. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Wolcott, M.P. Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr. Polym. 2012, 90, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-N.; Woo, E.M.; Nagarajan, S. Periodic crystal assembly of Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid): From surface to interior microstructure. Polymer 2021, 228, 123866. [Google Scholar] [CrossRef]
- Zhou, Y.; Katsou, E.; Fan, M. Interfacial structure and property of eco-friendly carboxymethyl cellulose/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites. Int. J. Biol. Macromol. 2021, 179, 550–556. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, S.; Yang, D.; Zhai, H.; You, Y.; Fu, X.; Yuan, J.; Zhou, X.; Wen, J.; Liu, Y. Synthesis of X-architecture CeO2 for the photodegradation of methylene blue under UV-light irradiation. J. Alloys Compd. 2017, 705, 131–137. [Google Scholar] [CrossRef]
- Subashini, A.; Varun Prasath, P.; Sagadevan, S.; Anita Lett, J.; Fatimah, I.; Mohammad, F.; Al-Lohedan, H.A.; Alshahateet, S.F.; Chun Oh, W. Enhanced photocatalytic degradation efficiency of graphitic carbon nitride-loaded CeO2 nanoparticles. Chem. Phys. Lett. 2021, 769, 138441. [Google Scholar] [CrossRef]
- Sinaei, N.; Zare, D.; Azin, M. Production and characterization of poly 3-hydroxybutyrate-co-3-hydroxyvalerate in wheat starch wastewater and its potential for nanoparticle synthesis. Braz. J. Microbiol. 2021, 52, 561–573. [Google Scholar] [CrossRef]
- Tanikkul, P.; Sullivan, G.L.; Sarp, S.; Pisutpaisal, N. Biosynthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) from palm oil. Case Stud. Chem. Environ. Eng. 2020, 2, 100045. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Reis, M.A.M.; Carvalheira, M.; Sammon, C.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents. Biomacromolecules 2021, 22, 2935–2953. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hu, W.; He, Y.; Ke, Y.; Wu, G.; Xiao, M.; Huang, L.; Tan, S. Preparation and Characterization of Poly(ethylene glycol)-block-Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-block-Poly(ethylene glycol) Triblock Copolymers. Macromol. Res. 2020, 28, 310–318. [Google Scholar] [CrossRef]
- Chotchindakun, K.; Pathom-Aree, W.; Dumri, K.; Ruangsuriya, J.; Pumas, C.; Pekkoh, J. Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020. Plants 2021, 10, 503. [Google Scholar] [CrossRef] [PubMed]
- Bayarı, S.; Severcan, F. FTIR study of biodegradable biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J. Mol. Struct. 2005, 744–747, 529–534. [Google Scholar] [CrossRef]
- Ojha, N.; Das, N. Fabrication and characterization of biodegradable PHBV/SiO2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol. 2020, 14, 785–795. [Google Scholar] [CrossRef]
- Chotchindakun, K.; Pekkoh, J.; Ruangsuriya, J.; Zheng, K.; Unalan, I.; Boccaccini, A.R. Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration. Polymers 2021, 13, 1794. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Patan, N.K.; Dalvi, Y.B.; Varghese, R.; Antony, A.; Unni, R.N.; Sandhyarani, N.; Moustafa, A.-E.A. Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications. ACS Biomater. Sci. Eng. 2020, 6, 58–70. [Google Scholar] [CrossRef]
- Mahamuni-Badiger, P.P.; Patil, P.M.; Patel, P.R.; Dhanavade, M.J.; Badiger, M.V.; Marathe, Y.N.; Bohara, R.A. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyethylene oxide (PEO) microfibers reinforced with ZnO nanocrystals for antibacterial and antibiofilm wound dressing applications. New J. Chem. 2020, 44, 9754–9766. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Fabra, M.J.; Lagaron, J.M. Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 524–533. [Google Scholar] [CrossRef]
- Castro Mayorga, J.L.; Fabra Rovira, M.J.; Cabedo Mas, L.; Sánchez Moragas, G.; Lagarón Cabello, J.M. Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J. Appl. Polym. Sci. 2018, 135, 45673. [Google Scholar] [CrossRef] [Green Version]
- Calvache-Muñoz, J.; Prado, F.A.; Rodríguez-Páez, J.E. Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 146–159. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Fabra, M.J.; Pourrahimi, A.M.; Olsson, R.T.; Lagaron, J.M. The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod. Process. 2017, 101, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Gofman, I.V.; Nikolaeva, A.L.; Khripunov, A.K.; Ivan’kova, E.M.; Shabunin, A.S.; Yakimansky, A.V.; Romanov, D.P.; Popov, A.L.; Ermakov, A.M.; Solomevich, S.O.; et al. Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell Proliferation. Polymers 2021, 13, 1999. [Google Scholar] [CrossRef]
- Brito, Z.; Sánchez, G. Influence of metallic fillers on the thermal and mechanical behaviour in composites of epoxy matrix. Compos. Struct. 2000, 48, 79–81. [Google Scholar] [CrossRef]
- Chhetri, S.; Adak, N.C.; Samanta, P.; Murmu, N.C.; Kuila, T. Exploration of Mechanical and Thermal Properties of CTAB-Modified MoS2/LLDPE Composites Prepared by Melt Mixing. J. Compos. Sci. 2018, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Hossain, K.M.Z.; Felfel, R.M.; Rudd, C.D.; Thielemans, W.; Ahmed, I. The effect of cellulose nanowhiskers on the flexural properties of self-reinforced polylactic acid composites. React. Funct. Polym. 2014, 85, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Ashori, A.; Jonoobi, M.; Ayrilmis, N.; Shahreki, A.; Fashapoyeh, M.A. Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. Int. J. Biol. Macromol. 2019, 136, 1119–1124. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Appl. Mater. Interfaces 2014, 6, 9822–9834. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Yang, W.; Niu, D.; Yu, M.; Du, M.; Dong, W.; Chen, M.; Jan Lemstra, P.; Ma, P. Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem. Eng. J. 2020, 382, 122864. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Lagarón, J.M. 1—Multifunctional and nanoreinforced polymers for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagarón, J.-M., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 1–28. [Google Scholar] [CrossRef]
- Öner, M.; Keskin, G.; Kızıl, G.; Pochat-Bohatier, C.; Bechelany, M. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/boron nitride bionanocomposites with enhanced barrier properties. Polym. Compos. 2019, 40, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Naidi, S.N.; Harunsani, M.H.; Tan, A.L.; Khan, M.M. Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J. Mater. Chem. B 2021, 9, 5599–5620. [Google Scholar] [CrossRef] [PubMed]
- Sadidi, H.; Hooshmand, S.; Ahmadabadi, A.; Javad Hoseini, S.; Baino, F.; Vatanpour, M.; Kargozar, S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020, 25, 4559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 2019, 62, 1727–1739. [Google Scholar] [CrossRef] [Green Version]
- Kızılkonca, E.; Torlak, E.; Erim, F.B. Preparation and characterization of antibacterial nano cerium oxide/chitosan/hydroxyethylcellulose/polyethylene glycol composite films. Int. J. Biol. Macromol. 2021, 177, 351–359. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Ali, M.; Zohra, T.; Akhtar, R.; Ikram, A.; Shinwari, Z.K.; Maaza, M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine 2020, 15, 467–488. [Google Scholar] [CrossRef]
- Vidal, O.L.; Barros Santos, M.C.; Batista, A.P.; Andrigo, F.F.; Baréa, B.; Lecomte, J.; Figueroa-Espinoza, M.C.; Gontard, N.; Villeneuve, P.; Guillard, V.; et al. Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. J. Food Eng. 2022, 312, 110744. [Google Scholar] [CrossRef]
Sample | a* | b* | L* | ΔE* | T | O |
---|---|---|---|---|---|---|
Neat PHBV | 0.74 ± 0.11 | 0.41 ± 0.15 | 90.44 ± 0.10 | --- | 2.69 ± 0.11 | 0.019 ± 0.120 |
PHBV- 0.5 wt.% CeO2NPs | 1.44 ± 0.08 | −0.24 ± 0.25 | 90.41 ± 0.11 | 0.72 ± 0.10 | 8.05 ± 0.08 | 0.053 ± 0.210 |
PHBV- 0.5 wt.% CeO2NPs + CTAB | 1.43 ± 0.10 | −0.29 ± 0.14 | 90.51 ± 0.12 | 0.71 ± 0.09 | 8.13 ± 0.06 | 0.059 ± 0.150 |
PHBV- 1.0 wt.% CeO2NPs | 1.02 ± 0.09 | 1.58 ± 0.11 | 90.27 ± 0.09 | 2.02 ± 0.07 | 9.83 ± 0.11 | 0.071 ± 0.190 |
PHBV- 1.0 wt.% CeO2NPs + CTAB | 1.00 ± 0.05 | 1.57 ± 0.19 | 90.55 ± 0.06 | 2.00 ± 0.06 | 10.80 ± 0.15 | 0.072 ± 0.070 |
PHBV- 1.5 wt.% CeO2NPs | 0.42 ± 0.12 | 3.89 ± 0.07 | 89.74 ± 0.20 | 4.36 ± 0.11 | 12.20 ± 0.20 | 0.088 ± 0.450 |
PHBV- 1.5 wt.% CeO2NPs + CTAB | 0.26 ± 0.11 | 3.80 ± 0.15 | 89.94 ± 0.15 | 4.27 ± 0.08 | 12.50 ± 0.16 | 0.091 ± 0.310 |
PHBV- 2.0 wt.% CeO2NPs | 0.18 ± 0.10 | 4.20 ± 0.11 | 89.24 ± 0.22 | 4.79 ± 0.10 | 10.10 ± 0.09 | 0.096 ± 0.240 |
PHBV- 2.0 wt.% CeO2NPs + CTAB | 0.23 ± 0.19 | 4.10 ± 0.10 | 89.60 ± 0.36 | 4.62 ± 0.05 | 10.00 ± 0.11 | 0.104 ± 0.160 |
PHBV- 5.0 wt.% CeO2NPs | 0.47 ± 0.17 | 4.88 ± 0.28 | 88.53 ± 0.32 | 5.63 ± 0.07 | 18.10 ± 0.14 | 0.146 ± 0.250 |
PHBV- 5.0 wt.% CeO2NPs + CTAB | 0.59 ± 0.16 | 4.76 ± 0.21 | 88.68 ± 0.29 | 5.46 ± 0.09 | 17.80 ± 0.18 | 0.142 ± 0.370 |
PHBV- 10.0 wt.% CeO2NPs | −0.32 ± 0.11 | 10.86 ± 0.31 | 87.08 ± 0.17 | 11.81 ± 0.11 | 19.20 ± 0.31 | 0.166 ± 0.110 |
PHBV- 10.0 wt.% CeO2NPs + CTAB | 0.36 ± 0.08 | 9.36 ± 0.18 | 87.77 ± 0.09 | 10.13 ± 0.06 | 19.80 ± 0.17 | 0.175 ± 0.150 |
Sample | First Heating | Cooling | Second Heating | ||
---|---|---|---|---|---|
Tm1 (°C) | ΔHm1 (J/g) | Tc (°C) | Tm2 (°C) | ΔHm2 (J/g) | |
PHBV commercial | 169.5 ± 0.3 | 78.1 ± 0.5 | 117.4 ± 0.1 | 171.5 ± 0.3 | 83.8 ± 1.1 |
PHBV- 0.5 wt.% CeO2NPs | 174.6 ± 0.4 | 73.5 ± 0.9 | 118.6 ± 0.2 | 171.4 ± 0.2 | 74.1 ± 0.3 |
PHBV- 1.0 wt.% CeO2NPs | 175.2 ± 0.3 | 71.7 ± 0.8 | 119.1 ± 0.1 | 171.9 ± 0.3 | 70.9 ± 0.6 |
PHBV- 1.5 wt.% CeO2NPs | 175.3 ± 0.5 | 72.3 ± 0.6 | 118.5 ± 0.3 | 171.2 ± 0.4 | 71.7 ± 0.5 |
PHBV- 2.0 wt.% CeO2NPs | 174.3 ± 0.4 | 69.7 ± 1.0 | 117.5 ± 0.4 | 170.3 ± 0.6 | 77.4 ± 0.3 |
PHBV- 5.0 wt.% CeO2NPs | 176.8 ± 0.1 | 67.9 ± 0.4 | 118.6 ± 0.3 | 172.7 ± 0.2 | 70.1 ± 0.6 |
PHBV- 10.0 wt.% CeO2NPs | 174.8 ± 0.7 | 63.3 ± 0.2 | 119.6 ± 0.5 | 171.1 ± 0.3 | 65.1 ± 0.4 |
PHBV- 0.5 wt.% CeO2NPs + CTAB | 174.5 ± 0.6 | 69.6 ± 0.6 | 117.3 ± 0.4 | 167.3 ± 0.2 | 66.5 ± 0.7 |
PHBV- 1.0 wt.% CeO2NPs + CTAB | 174.4 ± 0.7 | 69.7 ± 0.5 | 116.7 ± 0.3 | 164.4 ± 0.6 | 74.0 ± 0.4 |
PHBV- 1.5 wt.% CeO2NPs + CTAB | 175.6 ± 0.6 | 68.7 ± 0.3 | 118.5 ± 0.2 | 169.1 ± 0.5 | 68.9 ± 0.8 |
PHBV- 2.0 wt.% CeO2NPs + CTAB | 174.3 ± 0.2 | 71.2 ± 0.7 | 116.2 ± 0.5 | 165.7 ± 0.7 | 77.9 ± 0.2 |
PHBV- 5.0 wt.% CeO2NPs + CTAB | 174.9 ± 0.3 | 66.1 ± 0.9 | 116.5 ± 0.7 | 162.9 ± 0.4 | 69.1 ± 0.5 |
PHBV- 10.0 wt.% CeO2NPs + CTAB | 174.6 ± 0.4 | 64.0 ± 0.7 | 116.1 ± 0.3 | 162.9 ± 0.2 | 67.3 ± 0.8 |
Sample | T5% (°C) | Tdeg (°C) | Residual Mass (%) |
---|---|---|---|
Neat PHBV | 266.49 | 278.70 | 1.13 |
CeO2NPs | --- | --- | 96.04 |
PHBV- 0.5 wt.% CeO2NPs | 241.46 | 259.80 | 1.03 |
PHBV- 0.5 wt.% CeO2NPs + CTAB | 229.93 | 252.22 | 1.85 |
PHBV- 1.0 wt.% CeO2NPs | 232.72 | 258.26 | 2.03 |
PHBV- 1.0 wt.% CeO2NPs + CTAB | 225.22 | 247.86 | 2.48 |
PHBV- 1.5 wt.% CeO2NPs | 234.16 | 258.60 | 2.38 |
PHBV- 1.5 wt.% CeO2NPs + CTAB | 215.92 | 239.33 | 3.02 |
PHBV- 2.0 wt.% CeO2NPs | 239.71 | 265.35 | 2.93 |
PHBV- 2.0 wt.% CeO2NPs + CTAB | 230.55 | 258.24 | 2.25 |
PHBV- 5.0 wt.% CeO2NPs | 240.64 | 265.29 | 5.54 |
PHBV- 5.0 wt.% CeO2NPs + CTAB | 237.82 | 265.51 | 4.43 |
PHBV- 10.0 wt.% CeO2NPs | 236.96 | 261.66 | 15.56 |
PHBV- 10.0 wt.% CeO2NPs + CTAB | 225.73 | 251.34 | 17.22 |
Sample | E (MPa) | σy (MPa) | εb (%) | T (mJ/m3) |
---|---|---|---|---|
Neat PHBV | 2394 ± 506 a | 14.1 ± 4.0 a | 1.01 ± 0.11 a | 0.09 ± 0.04 a |
PHBV- 1.5 wt.% CeO2NPs + CTAB | 3309 ± 323 b | 26.9 ± 4.5 b | 1.22 ± 0.23 b | 0.18 ± 0.08 b |
PHBV- 5.0 wt.% CeO2NPs + CTAB | 3546 ± 533 c | 27.5 ± 3.7 c | 1.19 ± 0.10 c | 0.18 ± 0.03 b |
Sample | Thickness (µm) | WVP × 1014 (kg·m·m−2·Pa−1·s−1) | LP × 1015 (kg·m·m−2·Pa−1·s−1) | OP × 1019 (m3·m·m−2·Pa−1·s−1) |
---|---|---|---|---|
Neat PHBV | 75 | 5.34 ± 1.79 a | 26.80 ± 1.82 a | 3.65 ± 0.51 a |
PHBV- 1.5 wt.% CeO2NPs + CTAB | 80 | 1.58 ± 0.54 b | 6.71 ± 0.70 b | 6.92 ± 0.36 b |
PHBV- 5 wt.% CeO2NPs + CTAB | 85 | 2.68 ± 0.83 c | 8.23 ± 0.33 c | 8.35 ± 0.23 c |
Bacteria | CeO2NPs Content (wt.%) | Control Log (CFU/mL) | Film Log (CFU/mL) | R |
---|---|---|---|---|
S. aureus | 1.5 | 7.94 ± 0.09 | 6.89 ± 0.11 | 1.05 |
5.0 | 6.73 ± 0.07 | 1.11 | ||
E. coli | 1.5 | 8.02 ± 0.10 | 7.09 ± 0.08 | 0.93 |
5.0 | 6.98 ± 0.09 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Lopez, K.J.; Prieto, C.; Pardo-Figuerez, M.; Cabedo, L.; Lagaron, J.M. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials 2023, 13, 823. https://doi.org/10.3390/nano13050823
Figueroa-Lopez KJ, Prieto C, Pardo-Figuerez M, Cabedo L, Lagaron JM. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials. 2023; 13(5):823. https://doi.org/10.3390/nano13050823
Chicago/Turabian StyleFigueroa-Lopez, Kelly J., Cristina Prieto, Maria Pardo-Figuerez, Luis Cabedo, and Jose M. Lagaron. 2023. "Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications" Nanomaterials 13, no. 5: 823. https://doi.org/10.3390/nano13050823
APA StyleFigueroa-Lopez, K. J., Prieto, C., Pardo-Figuerez, M., Cabedo, L., & Lagaron, J. M. (2023). Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials, 13(5), 823. https://doi.org/10.3390/nano13050823