Engineering Magnetic Anisotropy of Rhenium Atom in Nitrogenized Divacancy of Graphene
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussions
3.1. Structure and Stability of Re@NDV
3.2. Magnetic Properties of Re@NDV
3.3. Charge Manipulation of MAE in Re@NDV
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.-S.; Wu, R.; Freeman, A.J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. 1993, 47, 14932–14947. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, P.; Rusponi, S.; Veronese, M.; Dhesi, S.S.; Grazioli, C.; Dallmeyer, A.; Cabria, I.; Zeller, R.; Dederichs, P.H.; Kern, K.; et al. Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles. Science 2003, 300, 1130–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Ou, X.; Wang, H.; Fan, F.; Li, Z.; Wu, H. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface. Phys. Rev. Lett. 2015, 115, 257201. [Google Scholar] [CrossRef] [Green Version]
- Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene. J. Physics Condens. Matter 2016, 28, 195301. [Google Scholar] [CrossRef]
- Ge, G.-X.; Li, Y.-B.; Wang, G.-H.; Wan, J.-G. Electric field control of the magnetic anisotropy energy of double-vacancy graphene decorated by iridium atoms. Phys. Chem. Chem. Phys. 2016, 18, 11550–11555. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ge, G.-X.; Wan, J.-G.; Zhao, J.-J.; Song, F.-Q.; Wang, G.-H. Predicted giant magnetic anisotropy energy of highly stable Ir dimer on single-vacancy graphene. Phys. Rev. 2013, 87, 155408. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Mi, W. 5d transition-metal atom/5d–3d dimer adsorption tailored electronic structure and magnetic anisotropy of two-dimensional WSe2 monolayers. J. Mater. Chem. 2020, 8, 11417–11425. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.-m.; Lv, J.; Wu, H.-s. Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA plus U framework. Appl. Surf. Sci. 2020, 508, 145797. [Google Scholar] [CrossRef]
- Guo, M.; Liang, X.; Wang, H.; Zhang, J. Magnetic anisotropy of iridium dimers on two-dimensional materials. Phys. Chem. Chem. Phys. 2019, 22, 238–244. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, T.-G.; Shao, B.; Zuo, X.; Feng, M. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene. AIP Adv. 2016, 6, 055708. [Google Scholar] [CrossRef] [Green Version]
- Navrátil, J.; Błoński, P.; Otyepka, M. Large magnetic anisotropy in an OsIr dimer anchored in defective graphene. Nanotechnology 2021, 32, 230001. [Google Scholar] [CrossRef]
- Deka, A.; Rana, B.; Anami, R.; Miura, K.; Takahashi, H.; Otani, Y.; Fukuma, Y. Electric-field control of interfacial in-plane magnetic anisotropy in CoFeB/MgO junctions. Phys. Rev. 2020, 101, 174405. [Google Scholar] [CrossRef]
- Guo, S.-D.; Guo, X.-S.; Wang, G.-Z.; Cheng, K.; Ang, Y.-S. Electric-field induced magnetic-anisotropy transformation to achieve spontaneous valley polarization. J. Mater. Chem. 2022, 10, 16363–16369. [Google Scholar] [CrossRef]
- Panchal, G.; Kojda, D.; Sahoo, S.; Bagri, A.; Kunwar, H.; Bocklage, L.; Panchwanee, A.; Sathe, V.; Fritsch, K.; Habicht, K.; et al. Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure. Phys. Rev. 2022, 105, 224419. [Google Scholar] [CrossRef]
- Ibrahim, F.; Yang, H.X.; Hallal, A.; Dieny, B.; Chshiev, M. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces. Phys. Rev. 2016, 93, 014429. [Google Scholar] [CrossRef]
- Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets. Science 2007, 315, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Díaz, P.; Dasa, T.R.; Stepanyuk, V.S. Tuning Magnetic Anisotropy in Metallic Multilayers by Surface Charging: An Ab Initio Study. Phys. Rev. Lett. 2013, 110, 267203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Ke, C.; Chen, K.; Wu, Z.; Wu, Y.; Li, X.; Kang, J. Magnetism manipulation of Co-n-adsorbed monolayer WS2 through charge injection. J. Phys. Condens. Matter. 2020, 32, 275001. [Google Scholar] [CrossRef] [PubMed]
- Brovko, O.O.; Ruiz-Díaz, P.; Dasa, T.R.; Stepanyuk, V.S. Controlling magnetism on metal surfaces with non-magnetic means: Electric fields and surface charging. J. Physics Condens. Matter 2014, 26, 093001. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, B.; Sun, N.; Fu, L.; Wang, X. Valley splitting and magnetic anisotropy in two-dimensional VI3/MSe2 (M = W, Mo) heterostructures. Phys. Chem. Chem. Phys. 2022, 24, 4374–4383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, A.; Chen, X.; Zhou, W.; Ouyang, F. Tuning valley splitting and magnetic anisotropy of multiferroic CuMP2X6 (M = Cr, V; X = S, Se) monolayer. Phys. Rev. 2022, 105, 085408. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, B.; Wang, X.; Mi, W. High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect. Mater. Today Phys. 2022, 28, 100847. [Google Scholar] [CrossRef]
- Yuan, M.; Tan, R.; Li, M.; Jin, C.; Jing, T.; Sun, Q. Tunable magnetocrystalline anisotropy of two-dimensional Fe3GeTe2 with adsorbed 5d-transition metal. Phys. Chem. Chem. Phys. 2022, 24, 21470–21476. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Chen, Z.F. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale 2013, 5, 4541–4583. [Google Scholar] [PubMed]
- Chiba, D.; Yamanouchi, M.; Matsukura, F.; Ohno, H. Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor. Science 2003, 301, 943–945. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Shimabukuro, R.; Fujiwara, Y.; Akiyama, T.; Ito, T.; Freeman, A.J. Giant Modification of the Magnetocrystalline Anisotropy in Transition-Metal Monolayers by an External Electric Field. Phys. Rev. Lett. 2009, 102, 187201. [Google Scholar] [CrossRef]
- Zhang, H.; Lazo, C.; Bluegel, S.; Heinze, S.; Mokrousov, Y. Electrically Tunable Quantum Anomalous Hall Effect in Graphene Decorated by 5d Transition-Metal Adatoms. Phys. Rev. Lett. 2012, 108, 056802. [Google Scholar] [CrossRef] [Green Version]
- Kandpal, H.C.; Koepernik, K.; Richter, M. Strong magnetic anisotropy of chemically bound Co dimers in a graphene sheet. Phys. Rev. 2012, 86, 235430. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Alonso, J.A. Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene. Phys. Rev. 2010, 81, 035403. [Google Scholar] [CrossRef]
- Amft, M.; Sanyal, B.; Eriksson, O.; Skorodumova, N.V. Small gold clusters on graphene, their mobility and clustering: A DFT study. J. Physics Condens. Matter 2011, 23, 205301. [Google Scholar] [CrossRef] [Green Version]
- Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117. [Google Scholar] [CrossRef]
- Hu, J.; Wu, R. Giant Magnetic Anisotropy of Transition-Metal Dimers on Defected Graphene. Nano Lett. 2014, 14, 1853–1858. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-C.; Li, Y.-F.; Liu, Y.; Zhu, Y.; Shi, L.-B. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide. Phys. Chem. Chem. Phys. 2017, 19, 13245–13251. [Google Scholar] [CrossRef] [PubMed]
- Estakhri, N.M.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef]
- Lalegani, Z.; Ebrahimi, S.S.; Hamawandi, B.; La Spada, L.; Batili, H.; Toprak, M. Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250. [Google Scholar] [CrossRef]
- Pacheco-Peña, V.; Beruete, M.; Rodríguez-Ulibarri, P.; Engheta, N. On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. New J. Phys. 2019, 21, 043056. [Google Scholar] [CrossRef] [Green Version]
- Greybush, N.J.; Pacheco-Peña, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, D.; Kresse, G.; Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. 2000, 62, 11556–11570. [Google Scholar] [CrossRef] [Green Version]
- Patrick, B. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. 1989, 39, 865–868. [Google Scholar]
Hybrid System | d (Å) | Eb (eV) | Mtotal (μB) | QRe | MAE (meV) |
---|---|---|---|---|---|
Re@NDV | 0.30 | 6.94 | 3.02 | 1.36 | 71.20 |
Re@DV | 0.78 | 8.10 | 1.05 | 1.06 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ji, G.; Ge, P.; Ge, G.; Yang, X.; Zhang, J. Engineering Magnetic Anisotropy of Rhenium Atom in Nitrogenized Divacancy of Graphene. Nanomaterials 2023, 13, 829. https://doi.org/10.3390/nano13050829
Liu H, Ji G, Ge P, Ge G, Yang X, Zhang J. Engineering Magnetic Anisotropy of Rhenium Atom in Nitrogenized Divacancy of Graphene. Nanomaterials. 2023; 13(5):829. https://doi.org/10.3390/nano13050829
Chicago/Turabian StyleLiu, Honglei, Guangtian Ji, Pingji Ge, Guixian Ge, Xiaodong Yang, and Jinli Zhang. 2023. "Engineering Magnetic Anisotropy of Rhenium Atom in Nitrogenized Divacancy of Graphene" Nanomaterials 13, no. 5: 829. https://doi.org/10.3390/nano13050829
APA StyleLiu, H., Ji, G., Ge, P., Ge, G., Yang, X., & Zhang, J. (2023). Engineering Magnetic Anisotropy of Rhenium Atom in Nitrogenized Divacancy of Graphene. Nanomaterials, 13(5), 829. https://doi.org/10.3390/nano13050829