Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Annealing of Substrates
2.3. Native PAGE Characterization
2.4. Fluorescence Kinetics
3. Results
3.1. The Principle of Our DNA Temporal Logic Circuit
3.2. The Expansibility of Our DNA Temporal Logic Circuit
3.2.1. Changes in the Number of Substrates
3.2.2. Changes in the Number of Inputs
3.3. Application to the Symmetrically Encrypted Communication of Binary Messages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology. Nature 1999, 402, C47–C52. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Sohn, C.H.; Dalal, C.K.; Cai, L.; Elowitz, M.B. Combinatorial gene regulation by modulation of relative pulse timing. Nature 2015, 527, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, C.A.; Kent, D.G.; Nangalia, J.; Silber, Y.; Wedge, D.C.; Grinfeld, J.; Baxter, E.J.; Massie, C.E.; Papaemmanuil, E.; Menon, S.; et al. Effect of Mutation Order on Myeloproliferative Neoplasms. N. Engl. J. Med. 2015, 372, 601–612. [Google Scholar] [CrossRef]
- Liu, L.Y.; Long, X.; Yang, C.P.; Miyares, R.L.; Sugino, K.; Singer, R.H.; Lee, T. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hong, F.; Liu, H.; Zhou, X.; Jiang, S.X.; Sulc, P.; Jiang, J.H.; Yan, H. A localized DNA finite-state machine with temporal resolution. Sci. Adv. 2022, 8, 11. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.J.; Liang, C.; Dong, Y.F.; Yang, J.; Xu, J. DNA Sequential Logic Gate Using Two-Ring DNA. ACS Appl. Mater. Interfaces 2016, 8, 9370–9376. [Google Scholar] [CrossRef]
- Liu, C.J.; Liu, Y.; Zhu, E.Q.; Zhang, Q.; Wei, X.P.; Wang, B. Cross-Inhibitor: A time-sensitive molecular circuit based on DNA strand displacement. Nucleic Acids Res. 2020, 48, 10691–10701. [Google Scholar] [CrossRef]
- Kishi, J.Y.; Schaus, T.E.; Gopalkrishnan, N.; Xuan, F.; Yin, P. Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 2018, 10, 155–164. [Google Scholar] [CrossRef]
- O’Brien, J.; Murugan, A. Temporal Pattern Recognition through Analog Molecular Computation. ACS Synth. Biol. 2019, 8, 826. [Google Scholar] [CrossRef]
- Simmel, F.C.; Yurke, B.; Singh, H.R. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem. Rev. 2019, 119, 6326–6369. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, L.Y.; Yang, S.; Tang, X.Q.; Chang, K.; Chen, M. Boolean logic gate based on DNA strand displacement for biosensing: Current and emerging strategies. Nanoscale Horiz. 2021, 6, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Fan, S.S.; Liu, Y.; Song, J. Information processing based on DNA toehold-mediated strand displacement (TMSD) reaction. Nanoscale 2021, 13, 2100–2112. [Google Scholar] [CrossRef] [PubMed]
- Scalise, D.; Schulman, R. Controlling Matter at the Molecular Scale with DNA Circuits. In Annual Review of Biomedical Engineering; Annual Review of Biomedical, Engineering; Yamush, M.L., Ed.; Annual Reviews: Palo Alto, CA, USA, 2019; Volume 21, pp. 469–493. [Google Scholar]
- Ding, W.; Deng, W.; Zhu, H.; Liang, H.J. Metallo-toeholds: Controlling DNA strand displacement driven by Hg(II) ions. Chem. Commun. 2013, 49, 9953–9955. [Google Scholar] [CrossRef] [PubMed]
- Bathe, M.; Rothemund, P.W.K. DNA Nanotechnology: A foundation for Programmable Nanoscale Materials. MRS Bull. 2017, 42, 882–888. [Google Scholar] [CrossRef]
- Fern, J.; Schulman, R. Modular DNA strand-displacement controllers for directing material expansion. Nat. Commun. 2018, 9, 8. [Google Scholar] [CrossRef]
- Chen, Y.J.; Groves, B.; Muscat, R.A.; Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 2015, 10, 748–760. [Google Scholar] [CrossRef]
- You, M.X.; Zhu, G.Z.; Chen, T.; Donovan, M.J.; Tan, W.H. Programmable and Multiparameter DNA-Based Logic Platform for Cancer Recognition and Targeted Therapy. J. Am. Chem. Soc. 2015, 137, 667–674. [Google Scholar] [CrossRef]
- Srinivas, N.; Parkin, J.; Seelig, G.; Winfree, E.; Soloveiehile, D. Enzyme-free nucleic acid dynamical systems. Science 2017, 358, 9. [Google Scholar] [CrossRef]
- Chen, Y.J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; Seelig, G. Programmable chemical controllers made from DNA. Nat. Nanotechnol. 2013, 8, 755–762. [Google Scholar] [CrossRef]
- Soloveichik, D.; Seelig, G.; Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. USA 2010, 107, 5393–5398. [Google Scholar] [CrossRef]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science 2006, 314, 1585–1588. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 2011, 3, 103–113. [Google Scholar] [CrossRef]
- Wang, F.; Lv, H.; Li, Q.; Li, J.; Zhang, X.; Shi, J.; Wang, L.; Fan, C. Implementing digital computing with DNA-based switching circuits. Nat. Commun. 2020, 11, 121. [Google Scholar] [CrossRef]
- Thubagere, A.J.; Thachuk, C.; Berleant, J.; Johnson, R.F.; Ardelean, D.A.; Cherry, K.M.; Qian, L.L. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 2017, 8, 12. [Google Scholar] [CrossRef]
- Garg, S.; Shah, S.; Bui, H.; Song, T.Q.; Mokhtar, R.; Reif, J. Renewable Time-Responsive DNA Circuits. Small 2018, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Thubagere, A.J.; Li, W.; Johnson, R.F.; Chen, Z.B.; Doroudi, S.; Lee, Y.L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D.; et al. A cargo-sorting DNA robot. Science 2017, 357, 9. [Google Scholar] [CrossRef]
- Urso, M.; Pumera, M. Micro- and Nanorobots Meet DNA. Adv. Funct. Mater. 2022, 32, 19. [Google Scholar] [CrossRef]
- Mirzaiebadizi, A.; Ravan, H.; Dabiri, S.; Mohammadi, P.; Shahba, A.; Ziasistani, M.; Khatami, M. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess. Biosyst. Eng. 2022, 45, 1781–1797. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.Y.; Zhang, Q.; Zhou, C.J.; Cao, W.Y. A nonlinear neural network based on an analog DNA toehold mediated strand displacement reaction circuit. Nanoscale 2022, 14, 6585–6599. [Google Scholar] [CrossRef] [PubMed]
- Cherry, K.M.; Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 2018, 559, 370–376. [Google Scholar] [CrossRef]
- Rodriguez, K.R.; Sarraf, N.; Qian, L. A Loser-Take-All DNA Circuit. ACS Synth. Biol. 2021, 10, 2878–2885. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Zhou, W.J.; Zhou, M.; Xiang, Y.; Yuan, R.; Chai, Y.Q. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens. Bioelectron. 2015, 64, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.Y.; Zhong, W.Y.; Fan, J.; Tan, Y.; Huang, Q.C.; Liu, Y.Z. Addressable activated cascade DNA sequential logic circuit model for processing identical input molecules. Chem. Commun. 2019, 55, 6381–6384. [Google Scholar] [CrossRef]
- Lapteva, A.P.; Sarraf, N.; Qian, L.L. DNA Strand-Displacement Temporal Logic Circuits. J. Am. Chem. Soc. 2022, 144, 12443–12449. [Google Scholar] [CrossRef]
- Chen, S.X.; Seelig, G. A DNA neural network constructed from molecular variable gain amplifiers. In Proceedings of the DNA Computing and Molecular Programming: 23rd International Conference, DNA 23, Austin, TX, USA, 24–28 September 2017; pp. 110–121. [Google Scholar]
- Lopez, R.; Wang, R.F.; Seelig, G. A molecular multi-gene classifier for disease diagnostics. Nat. Chem. 2018, 10, 746. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Liang, Y.; Yang, J.; Zhang, C. Development of Synthetic DNA Circuit and Networks for Molecular Information Processing. Nanomaterials 2021, 11, 2955. [Google Scholar] [CrossRef]
- Cao, B.; Shi, P.J.; Zheng, Y.F.; Zhang, Q. FMG: An observable DNA storage coding method based on frequency matrix game graphs. Comput. Biol. Med. 2022, 151, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Chao, J.; Xie, M.; Liu, H.; Pan, M.; Kopperger, E.; Liu, X.; Li, Q.; Shi, J.; et al. DNA origami cryptography for secure communication. Nat. Commun. 2019, 10, 5469. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.Q.; Luo, X.H.; Liu, C.J.; Chen, C.Z. An Operational DNA Strand Displacement Encryption Approach. Nanomaterials 2022, 12, 877. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Liu, Y.; Zhang, X.; Qin, R.; Wang, B.; Zhang, Q. Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit. Nanomaterials 2023, 13, 903. https://doi.org/10.3390/nano13050903
Zhao S, Liu Y, Zhang X, Qin R, Wang B, Zhang Q. Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit. Nanomaterials. 2023; 13(5):903. https://doi.org/10.3390/nano13050903
Chicago/Turabian StyleZhao, Shuai, Yuan Liu, Xiaokang Zhang, Rui Qin, Bin Wang, and Qiang Zhang. 2023. "Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit" Nanomaterials 13, no. 5: 903. https://doi.org/10.3390/nano13050903
APA StyleZhao, S., Liu, Y., Zhang, X., Qin, R., Wang, B., & Zhang, Q. (2023). Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit. Nanomaterials, 13(5), 903. https://doi.org/10.3390/nano13050903