Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application
Abstract
:1. Introduction
2. Structure of BHJ Nano Photo Diodes
2.1. Device Physics of Bulk Heterojunction Photovoltaic Cells
2.2. Characteristics of OPV
3. Fabrication Process Flow of NPD Device
Fabrication Steps
- a.
- Anode Layer Coating
- b.
- Formation of Photo Active Layer
- c.
- Cathode Layer Deposition
4. Optimization Design of Device Layers and Process Standardization
4.1. Active Layer Thickness Optimization
4.2. Cathode Layer Thickness Optimization
5. Fabrication Characterization, Results, and Discussion
6. Comparison with Reported NPD PV Cells
7. Conclusions and Future Recommendation
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, J.U. Retinal Implanta bioMEMS Challenge. Sens. Actuators A: Phys. 2002, 97, 1–9. [Google Scholar] [CrossRef]
- van Lookeren Campagne, M.; LeCouter, J.; Yaspan, B.L.; Ye, W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J. Pathol. 2014, 232, 151–164. [Google Scholar] [CrossRef]
- Flannery, J.; Farber, D.; Bird, A.C.; Bok, D. Degenerative Changes in a Retina Affected with Autosomal Dominant Retinitis Pigmentosa. Investig. Opthalmology Vis. Sci. 1989, 30, 191–211. [Google Scholar]
- Mokwa, W. 3.06 Artificial Retinas. 2008, pp. 201–217. Available online: https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sg/dist/a/315/files/2010/03/3.06-Artificial-Retinas.pdf (accessed on 3 January 2023).
- Luo, Y.H.-L.; da Cruz, L. The Argus® II Retinal Prosthesis System. Prog. Retin. Eye Res. 2016, 50, 89–107. [Google Scholar] [CrossRef]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Chee, C.K.; Cottriall, C.L.; Gekeler, F.; Groppe, M.; Jackson, T.L.; MacLaren, R.E.; Koitschev, A.; et al. Subretinal Visual Implant Alpha IMS—Clinical trial interim report. Vis. Res. 2015, 111, 149–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, K.; Horch, K.W.; Normann, R.A. Mobility Performance with a Pixelized Vision System. Vis. Res. 1992, 32, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, G.; Keane, P.; Narla, V.; Yang, L.; Weiland, J.; Humayun, M. Real and virtual mobility performance in simulated prosthetic vision. J. Neural Eng. 2007, 4, S92–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, A.Y.; Peachey, N.S. The subretinal microphotodiode array retinal prosthesis. Ophthalmic Res. 1998, 30, 195–196. [Google Scholar] [CrossRef]
- Peyman, G.; Chow, A.Y.; Liang, C.; Chow, V.Y.; Perlman, J.I.; Peachey, N.S. Subretinal semiconductor micro photodiode array. Ophthalmic Surg. Lasers Imaging Retin. 1998, 29, 234–241. [Google Scholar] [CrossRef]
- Chow, A.Y.; Peachey, N. The Subretinal Microphotodiode Array Retinal Prosthesis II. Ophthalmic Res. 1999, 31, 246. [Google Scholar] [CrossRef]
- Chow, A.Y.; Pardue, M.T.; I Perlman, J.; Ball, S.L.; Chow, V.Y.; Hetling, J.R.; A Peyman, G.; Liang, C.; Stubbs, E.B.; Peachey, N.S. Subretinal implantation of semiconductor-based photodiodes: Durability of novel implant designs. J. Rehabilitation Res. Dev. 2002, 39, 313–322. [Google Scholar]
- Chow, A.Y.; Chow, V.Y.; Packo, K.H.; Pollack, J.S.; Peyman, G.A.; Schuchard, R. The Artificial Silicon Retina Microchip for the Treatment of Vision Loss from Retinitis Pigmentosa. Arch. Ophthalmol. 2004, 122, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, H.; Ernemann, U.; Sachs, H.; Gekeler, F.; Danz, S.; Koitschev, A.; Besch, D.; Bartz-Schmidt, K.-U.; Zrenner, E.; Stingl, K.; et al. CT Assessment of Intraorbital Cable Movement of Electronic Subretinal Prosthesis in Three Different Surgical Approaches. Transl. Vis. Sci. Technol. 2021, 10, 16. [Google Scholar] [CrossRef]
- Kapetanovic, J.C.; Troelenberg, N.; Edwards, T.L.; Xue, K.; Ramsden, J.D.; Stett, A.; Zrenner, E.; MacLaren, R.E. Highest reported visual acuity after electronic retinal implantation. Acta Ophthalmol. 2020, 98, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Schwahn, H.N.; Gekeler, F.; Kohler, K.; Kobuch, K.; Sachs, H.G.; Schulmeyer, F.; Jakob, W.; Gabel, V.-P.; Zrenner, E. Studies on the feasibility of a subretinal visual prosthesis: Data from Yucatan micropig and rabbit. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 961–967. [Google Scholar] [CrossRef]
- Zrenner, E.; Gekeler, F.; Gabel, V.; Graf, H.; Graf, M.; Guenther, E.; Haemmerle, H.; Hoefflinger, B.; Kobuch, K.; Kohler, K.; et al. Subretinales Mikrophotodioden- Array als Ersatz für degenerierte Photorezeptoren? Der Ophthalmol. 2001, 98, 357–363. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Singh, M.S.; Zrenner, E.; MacLaren, R.E. Bioengineering strategies for restoring vision. Nat. Biomed. Eng. 2022, 1–18. [Google Scholar] [CrossRef]
- Gekeler, F.; Szurman, P.; Grisanti, S.; Weiler, U.; Claus, R.; Greiner, T.-O.; Völker, M.; Kohler, K.; Zrenner, E.; Bartz-Schmidt, K.U. Compound subretinal prostheses with extra-ocular parts designed for human trials: Successful long-term implantation in pigs. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 245, 230–241. [Google Scholar] [CrossRef]
- Besch, D.; Sachs, H.; Szurman, P.; Gulicher, D.; Wilke, R.; Reinert, S.; Zrenner, E.; Bartz-Schmidt, K.U.; Gekeler, F. Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: Feasibility and outcome in seven patients. Br. J. Ophthalmol. 2008, 92, 1361–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zrenner, E.; Bartz-Schmidt, K.U.; Benav, H.; Besch, D.; Bruckmann, A.; Gabel, V.-P.; Gekeler, F.; Greppmaier, U.; Harscher, A.; Kibbel, S.; et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B: Boil. Sci. 2010, 278, 1489–1497. [Google Scholar] [CrossRef]
- Wilke, R.; Gabel, V.-P.; Sachs, H.; Schmidt, K.-U.B.; Gekeler, F.; Besch, D.; Szurman, P.; Stett, A.; Wilhelm, B.; Peters, T.; et al. Spatial Resolution and Perception of Patterns Mediated by a Subretinal 16-Electrode Array in Patients Blinded by Hereditary Retinal Dystrophies. Opthalmology Vis. Sci. 2011, 52, 5995–6003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.W.; I Kamins, T.; Chen, Z.C.; Wang, B.-Y.; Bhuckory, M.; Galambos, L.; Ho, E.; Ling, T.; Afshar, S.; Shin, A.; et al. Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 2021, 18, 036015. [Google Scholar] [CrossRef] [PubMed]
- Mandel, Y.; Goetz, G.; Lavinsky, D.; Huie, P.; Mathieson, K.; Wang, L.; Kamins, T.; Galambos, L.; Manivanh, R.; Harris, J.; et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 2013, 4, 1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.C.; Wang, B.Y.; Goldstein, A.K.; Butt, E.; Mathieson, K.; Palanker, D. Photovoltaic implant simulator reveals resolution limits in subretinal prosthesis. J. Neural Eng. 2022, 19, 055008. [Google Scholar] [CrossRef]
- Wallace, G.G.; Moulton, S.E.; Clark, G.M. Electrode-Cellular Interface. Science 2009, 324, 185–186. [Google Scholar] [CrossRef]
- Kotov, N.A.; Winter, J.O.; Clements, I.P.; Jan, E.; Timko, B.P.; Campidelli, S.; Pathak, S.; Mazzatenta, A.; Lieber, C.M.; Prato, M.; et al. Nanomaterials for Neural Interfaces. Adv. Mater. 2009, 21, 3970–4004. [Google Scholar] [CrossRef] [Green Version]
- Pappas, T.C.; Wickramanyake, W.M.S.; Jan, E.; Motamedi, M.; Brodwick, M.; Kotov, N.A. Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett. 2006, 7, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, V.M.; Srivastava, V.M. Device modeling of organic photovoltaic cells with traditional and inverted cells using s-SWCNT:C60 as active layer. Nanomaterials 2022, 12, 2844. [Google Scholar] [CrossRef]
- Moorthy, V.M.; Srivastava, V.M. Effect of active layer thickness on organic thin-film transistors. ECS Trans. 2022, 109, 115–121. [Google Scholar] [CrossRef]
- Bareket, L.; Waiskopf, N.; Rand, D.; Lubin, G.; David-Pur, M.; Ben-Dov, J.; Roy, S.; Eleftheriou, C.; Sernagor, E.; Cheshnovsky, O.; et al. Semiconductor Nanorod—Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas. Nano Lett. 2014, 14, 6685–6692. [Google Scholar] [CrossRef]
- Antognazza, M.R.; Ghezzi, D.; Musitelli, D.; Garbugli, M.; Lanzani, G. A hybrid solid-liquid polymer photodiode for the bioenvironment A hybrid solid-liquid polymer photodiode for the bioenvironment. Appl. Phys. Lett. 2009, 94, 243501. [Google Scholar] [CrossRef]
- Ghezzi, D.; Antognazza, M.R.; Maschio, M.D.; Lanzarini, E.; Benfenati, F.; Lanzani, G. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2011, 2, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maya-Vetencourt, J.F.; Ghezzi, D.; Antognazza, M.R.; Colombo, E.; Mete, M.; Feyen, P.; Desii, A.; Buschiazzo, A.; Di Paolo, M.; Di Marco, S.; et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 2017, 16, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghezzi, D.; Antognazza, M.R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani, G.; et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon- 2013, 7, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antognazza, M.R.; Di Paolo, M.; Ghezzi, D.; Mete, M.; Di Marco, S.; Maya-Vetencourt, J.F.; Maccarone, R.; Desii, A.; Di Fonzo, F.; Bramini, M.; et al. Characterization of a Polymer-Based, Fully Organic Prosthesis for Implantation into the Subretinal Space of the Rat. Adv. Heal. Mater. 2016, 5, 2271–2282. [Google Scholar] [CrossRef]
- Narayan, K.S.; Gautam, V.; Bag, M. Artificial Retina Device. U.S. Patent US 9,037,251 B2, 2015. [Google Scholar]
- Rathbun, S.D. Chapter 1 Restoring Vision to the Blind: The New Age of Implanted Visual Prostheses Recent Advances in Retinal Stimulation: Clinical Applications. Transl. Vis. Sci. 2014, 3, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Lorach, H.; Huie, P.; Palanker, D. Implantation of Modular Photovoltaic Subretinal Prosthesis. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 171–174. [Google Scholar] [CrossRef]
- Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2, 463–470. [Google Scholar] [CrossRef]
- Srivastava, V.M.; Singh, G. MOSFET Technologies for Double-Pole Four Throw Radio Frequency Switch; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Rathore, R.S.; Rana, A.K.; Srivastava, V.M. Impact of oxide thickness fluctuation for resist- and spacer-defined FinFETs. In Proceedings of the Annual 4th IEEE Latin American Electron Devices Conference (LAEDC), Cancun, Mexico, 4–6 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.; Wang, Y.; Iqbal, Z.; Chhowalla, M.; Mitra, S. A fullerene—Single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J. Mater. Chem. 2007, 17, 2406–2411. [Google Scholar] [CrossRef]
- Bindl, D.J.; Wu, M.-Y.; Prehn, F.C.; Arnold, M.S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2010, 11, 455–460. [Google Scholar] [CrossRef]
- Gong, M.; Shastry, T.A.; Xie, Y.; Bernardi, M.; Jasion, D.; Luck, K.A.; Marks, T.J.; Grossman, J.C.; Ren, S.; Hersam, M.C. Polychiral Semiconducting Carbon Nanotube—Fullerene Solar Cells. Nano Lett. 2014, 14, 5308–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swapna, P.; Rao, Y.S. Fabrication and characterization of semiconducting single walled carbon nano tube based bulk hetero junction organic solar cell using spin coating technique. J. Chin. Adv. Mater. Soc. 2015, 3, 161–169. [Google Scholar] [CrossRef]
- Moorthy, V.M.; Srivastava, V.M. Device modelling and optimization of nanomaterial-based planar heterojunction solar cell (by varying the device dimensions and material parameters). Nanomaterials 2022, 12, 3031. [Google Scholar] [CrossRef]
- Gowthaman, N.; Srivastava, V.M. Mathematical modeling of drain current estimation in a CSDG MOSFET, based on La2O3 oxide layer with fabrication—A nanomaterial approach. Nanomaterials 2022, 12, 3374. [Google Scholar] [CrossRef]
- Mutepfe, C.D.K.; Srivastava, V.M. Design and implementation of graphene-based tunable microwave filter for THz applications. Nanomaterials 2022, 12, 4443. [Google Scholar] [CrossRef]
- Meo, M.; Rossi, M. Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos. Sci. Technol. 2006, 66, 1597–1605. [Google Scholar] [CrossRef]
- Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; E Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 2009, 3, 297–302. [Google Scholar] [CrossRef]
- Gerasimenko, A.Y.; Ten, G.N.; Ryabkin, D.I.; Shcherbakova, N.E.; Morozova, E.A.; Ichkitidze, L.P. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy. Acta Part A Mol. Biomol. Spectrosc. 2019, 227, 117682. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Dong, Y.; Huang, X. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System. Int. J. Photoenergy 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, M.; Majumdar, H.S.; Kauppila, J.; Lukkari, J.; Österbacka, R. Large-scale solution processable graphene-based thin film devices. MRS Proc. 2012, 1407, 237–242. [Google Scholar] [CrossRef]
- Pierre, A.; Lu, S.; Howard, I.A.; Facchetti, A.; Arias, A.C. Empirically based device modeling of bulk heterojunction organic photovoltaics. J. Appl. Phys. 2013, 113, 154506. [Google Scholar] [CrossRef] [Green Version]
- Meyyappan, M.V.; Daniel, R.J.; Shanmugaraja, P. Comparison studies of planar and bulk hetero junction nano photo diodes using carbon nano tube’s (CNT) and Graphene for Sub-retinal implant. In Proceedings of the 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, India, 2–3 March 2018. [Google Scholar] [CrossRef]
- Ismail, Y.A.; Soga, T.; Jimbo, T. Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell. Int. J. N. Hor. Phys. 2015, 2, 87–93. [Google Scholar]
- Zhi-Hui, F.; Yan-Bing, H.; Quan-Min, S.; Li-Fang, Q.; Yan, L.; Lei, Z.; Xiao-Jun, L.; Feng, T.; Yong-Sheng, W.; Rui-Dong, X. Polymer solar cells based on a PEDOT: PSS layer spin-coated under the action of an electric field. Chin. Phys. B 2010, 19, 038601. [Google Scholar] [CrossRef]
- Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868. [Google Scholar] [CrossRef]
- Das, S.; Alford, T.L. Improved efficiency of P3HT: PCBM solar cells by incorporation of silver oxide interfacial layer. J. Appl. Phys. 2014, 116, 044905. [Google Scholar] [CrossRef] [Green Version]
- Otieno, F.; Shumbula, N.P.; Airo, M.; Mbuso, M.; Moloto, N.; Erasmus, R.M.; Quandt, A.; Wamwangi, D. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT: PSS buffer layer. AIP Adv. 2017, 7, 085302. [Google Scholar] [CrossRef] [Green Version]
- Girtan, M.; Rusu, M. Role of ITO and PEDOT: PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Keyvani-Someh, E.; Hennighausen, Z.; Lee, W.; Igwe, R.C.K.; Kramdi, M.E.; Kar, S.; Fenniri, H. Organic Photovoltaics with Stacked Graphene Anodes. ACS Appl. Energy Mater. 2017, 1, 17–21. [Google Scholar] [CrossRef]
- Wang, Z.; Puls, C.P.; Staley, N.E.; Zhang, Y.; Todd, A.; Xu, J.; Howsare, C.A.; Hollander, M.J.; Robinson, J.A.; Liu, Y. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices. Phys. E Low-Dimens. Syst. Nanostructures 2011, 44, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, V.M.; Sugantharathnam, M.; Rathnasami, J.D.; Pattan, S. Design and characterization of graphene-based nano-photodiode array device for photo-stimulation of subretinal implant. Micro Nano Lett. 2019, 14, 1131–1135. [Google Scholar] [CrossRef]
- Tung, V.C.; Chen, L.-M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-Temperature Solution Processing of Graphene- Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y.M.; Zhang, H. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 2010, 4, 5263–5268. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Hasan, A.A.; Saha, A. Photovoltaic Performance of P3HT:SWCNT:PCBM based Bulk Heterojunction Solar Cell. Ph.D. Thesis, BRAC University, Dhaka, Bangladesh, 2015. [Google Scholar]
Active Layer Thickness (nm) | VOC (V) | Jsc (mA/cm2) | FF (%) | Power Conversion Efficiency (PCE) (%) |
---|---|---|---|---|
50 | 0.73 | 11.329 | 44.36 | 3.68 |
75 | 0.75 | 12.036 | 46.31 | 4.1 |
100 | 0.78 | 12.743 | 48.24 | 4.76 |
150 | 0.78 | 14.157 | 48.75 | 5.3 |
Al Thickness (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
10 | 0.724 | 12.68 | 51 | 5.16 |
20 | 0.725 | 12.69 | 51 | 5.16 |
30 | 0.727 | 12.71 | 51 | 5.16 |
40 | 0.728 | 12.73 | 51 | 5.16 |
50 | 0.734 | 12.73 | 51 | 5.16 |
75 | 0.736 | 12.74 | 52 | 5.16 |
100 | 0.737 | 12.75 | 52 | 5.16 |
125 | 0.738 | 12.75 | 52 | 5.17 |
Active Layer: (SWCNT: C60) Blend | |
---|---|
Device Name | Spin Speed (rpm) |
A | 1200 |
B | 1000 |
C | 800 |
D | 600 |
Sample | Existing Work Using Graphene Coating (Over the Glass Substrate) | This Work, Graphene Coating in PET Substrate | ||||||
---|---|---|---|---|---|---|---|---|
VOC (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | VOC (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
A | 0.58 | 4.276 | 48.5 | 1.20 | 0.68 (±0.00) | 11.34 (±0.26) | 70.00 (±0.45) | 5.7 (±0.08) |
B | 0.63 | 6.21 | 50.0 | 1.96 | 0.69 (±0.00) | 12.05 (±0.59) | 71.05 (±1.02) | 6.43 (±0.16) |
C | 0.62 | 10.55 | 49.2 | 3.20 | 0.71 (±0.00) | 16.3 (±0.17) | 73.00 (±0.45) | 7.52 (±0.11) |
D | 0.68 | 12.13 | 46.6 | 3.85 | 0.75 (±0.00) | 19.05 (±0.26) | 79.56 (±0.45) | 10.1 (±0.75) |
REF | Anode Layer | Active Layer | Cathode | PCE (%) |
---|---|---|---|---|
[57] | ITO/PEDOT: PSS | P3HT: PCBM | Al | 0.55 |
[58] | ITO/PEDOT: PSS | P3HT: PCBM | Al | 2.93 |
[59] | ITO/PEDOT: PSS | P3HT: PCBM | Al | 4.37 |
[60] | ITO/PEDOT: PSS | P3HT: PCBM | LiF-Al | 1.74 |
[60] | AgOx-ITO/PEDOT: PSS | P3HT: PCBM | LiF-Al | 2.25 |
[61] | ITO/PEDOT:PSS+Au | P3HT: PCBM | Al | 3.23 |
[62] | PEDOT: PSS | P3HT: PCBM | Al | 0.0038 |
[63] | ITO/PEDOT: PSS | P3HT: PCBM | Al | 3.56 |
[64] | ITO/PEDOT: PSS | P3HT: PCBM | Al | 3.86 |
REF | Anode Layer | Active Layer | Cathode | PCE (%) |
---|---|---|---|---|
[65] | G-CNT/PEDOT: PSS | P3HT: PCBM | Al | 0.85 |
[66] | rGO/PEDOT: PSS | P3HT: PCBM | TiO2/Al | 0.77 |
[63] | Stacked Graphene/PEDOT: PSS | P3HT: PCBM | Ca/Al | 0.89 |
[64] | Graphene/PEDOT: PSS | P3HT: PCBM | Al | 3.98 |
[65] | Graphene | SWCNT: C60 | Al | 3.85 |
This work | G-PET | SWCNT: C60 | Al | 10.1 |
REF | Anode Layer | Active Layer | Cathode | PCE (%) |
---|---|---|---|---|
[43] | ITO | P3HT: C60–SWCNT | Al | 0.57 |
[43] | ITO | P3HT: C60 | Al | 0.38 |
[67] | ITO/PEDOT: PSS | P3HT: SWCNT: PCBM | Al | 2.38 |
[45] | ITO/PEDOT: PSS | s-SWCNT/PC71BM | BCP/Al | 2.5 |
[45] | ITO/PEDOT: PSS | s-SWCNT/PC71BM | Moox/Ag | 3.1 |
[46] | Graphene | SWCNT: C60 | Al | 0.81 |
[65] | Graphene | SWCNT: C60 | Al | 3.85 |
This work | G-PET | SWCNT: C60 | Al | 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moorthy, V.M.; Rathnasami, J.D.; Srivastava, V.M. Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application. Nanomaterials 2023, 13, 934. https://doi.org/10.3390/nano13050934
Moorthy VM, Rathnasami JD, Srivastava VM. Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application. Nanomaterials. 2023; 13(5):934. https://doi.org/10.3390/nano13050934
Chicago/Turabian StyleMoorthy, Vijai M., Joseph D. Rathnasami, and Viranjay M. Srivastava. 2023. "Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application" Nanomaterials 13, no. 5: 934. https://doi.org/10.3390/nano13050934
APA StyleMoorthy, V. M., Rathnasami, J. D., & Srivastava, V. M. (2023). Design Optimization and Characterization with Fabrication of Nanomaterials-Based Photo Diode Cell for Subretinal Implant Application. Nanomaterials, 13(5), 934. https://doi.org/10.3390/nano13050934