Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Layer-by-Layer Synthesis of a Single-Layer WiMTiP Composite
2.2. Structures of WiMTiP Composites
2.3. Macroscopic Surface Topology by Optical Microscope
2.4. Microscopic Surface Characterization by Atomic Force Microscopy (AFM)
2.5. Interfacial Rheology by Nano-Indentation
3. Results
3.1. Principle of Fabricating Wrinkle Free Metallic Thin Film in Polymer (WiMTiP) by Interfacial Jamming
3.2. Layer-By-Layer WiMTiP Synthesis
3.3. Effect of Jammer
3.4. WiMTiP Sensitivity for Optomechanic Sensing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, X.; Zhao, Y.; Cao, Y.; Lu, C. Controlling and prevention of surface wrinkling via size-dependent critical wrinkling strain. Soft Matter 2015, 11, 4444–4452. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipomi, D.J.; Tee, B.C.K.; Vosgueritchian, M.; Bao, Z. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771–1775. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.G.; Kwon, J.H.; Kang, K.S.; Jeong, S.Y.; Choi, K.C. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J. Inf. Disp. 2020, 21, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.J.; Dixon, S.; Hale, L.R.; Darbyshire, A.; Martin, D.; de Mel, A. Biomimetic heterogenous elastic tissue development. NPJ Regen. Med. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shi, Q.; Lee, C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019, 7, 031302. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric elastomer artificial muscle: Materials innovations and device explorations. Acc. Chem. Res. 2019, 52, 316–325. [Google Scholar] [CrossRef]
- Khang, D.Y.; Rogers, J.A.; Lee, H.H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2009, 19, 1526–1536. [Google Scholar] [CrossRef]
- Chung, J.Y.; Nolte, A.J.; Stafford, C.M. Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties. Adv. Mater. 2011, 23, 349–368. [Google Scholar] [CrossRef]
- Biot, M.A. Surface instability of rubber in compression. Appl. Sci. Res. Sect. A 1963, 12, 168–182. [Google Scholar] [CrossRef]
- Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Gent, A.N.; Cho, I.S. Surface Instabilities in Compressed or Bent Rubber Blocks. Rubber Chem. Technol. 1999, 72, 253–262. [Google Scholar] [CrossRef]
- Trujillo, V.; Kim, J.; Hayward, R.C. Creasing instability of surface-attached hydrogels. Soft Matter 2008, 4, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Sultan, E.; Boudaoud, A. The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. 2008, 75, 051002. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.P.; Crosby, A.J. Fabricating Microlens Arrays by Surface Wrinkling. Adv. Mater. 2006, 18, 3238–3242. [Google Scholar] [CrossRef]
- Jiang, H.; Khang, D.-Y.; Song, J.; Sun, Y.; Huang, Y.; Rogers, J.A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607–15612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizenberg, J.; Black, A.J.; Whitesides, G.M. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature 1998, 394, 868–871. [Google Scholar] [CrossRef]
- Audoly, B.; Boudaoud, A. Buckling of a stiff film bound to a compliant substrate—Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 2008, 56, 2401–2421. [Google Scholar] [CrossRef]
- Huck, W.T.S.; Bowden, N.; Onck, P.; Pardoen, T.; Hutchinson, J.W.; Whitesides, G.M. Ordering of Spontaneously Formed Buckles on Planar Surfaces. Langmuir 2000, 16, 3497–3501. [Google Scholar] [CrossRef]
- Schweikart, A.; Fery, A. Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 2009, 165, 249–263. [Google Scholar] [CrossRef]
- Chen, X.; Hutchinson, J.W. Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 2004, 71, 597–603. [Google Scholar] [CrossRef]
- Genzer, J.; Groenewold, J. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2006, 2, 310–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breid, D.; Crosby, A.J. Effect of stress state on wrinkle morphology. Soft Matter 2011, 7, 4490–4496. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Crosby, A.J. High aspect ratio wrinkles via substrate prestretch. Adv. Mater. 2014, 26, 5626–5631. [Google Scholar] [CrossRef]
- Imburgia, M.J.; Crosby, A.J. Rolling wrinkles on elastic substrates. Extrem. Mech. Lett. 2016, 6, 23–30. [Google Scholar] [CrossRef]
- Yang, Y.; Han, X.; Ding, W.; Jiang, S.; Cao, Y.; Lu, C. Controlled Free Edge Effects in Surface Wrinkling via Combination of External Straining and Selective O2 Plasma Exposure. Langmuir 2013, 29, 7170–7177. [Google Scholar] [CrossRef]
- Khang, D.-Y.; Jiang, H.; Huang, Y.; Rogers, J.A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 2006, 311, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.; Bowen, A.M.; Huang, Y.G.; Nuzzo, R.G.; Rogers, J.A. Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Adv. Mater. 2012, 24, 5284–5318. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Wang, Z.; Cai, Y.; Liu, Z.; Liu, Z.; Xu, Z.; Zhang, X.; Du, L. Transfer printing via a PAA sacrificial layer for wrinkle-free PDMS metallization. J. Mater.Sci. Mater. Electron. 2020, 31, 2347–2352. [Google Scholar] [CrossRef]
- Lim, K.S.; Chang, W.-J.; Koo, Y.-M.; Bashir, R. Reliable fabrication method of transferable micron scale metal pattern for poly (dimethylsiloxane) metallization. Lab Chip 2006, 6, 578–580. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Zhang, J.; Hong, T.; Sun, W.; Tang, L.; Arnold, E.; Suo, Z.; Hong, W.; Ren, Z. Giant Poisson’s Effect for Wrinkle-Free Stretchable Transparent Electrodes. Adv. Mater. 2019, 31, 1902955. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Sun, T.; Liu, Q.; Suo, Z.; Ren, Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 2014, 5, 3121. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, L.; Mo, C.; Cao, Y.; Wu, W.; Wang, W. Caulking polydimethylsiloxane molecular networks by thermal chemical vapor deposition of parylene-C. Lab Chip 2016, 16, 4220–4229. [Google Scholar] [CrossRef] [PubMed]
- Aussillous, P.; Quere, D. Liquid marbles. Nature 2001, 411, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, A.B.; Abkarian, M.; Mahadevan, L.; Stone, H.A. Mechanics of interfacial composite materials. Langmuir 2006, 22, 10204–10208. [Google Scholar] [CrossRef] [Green Version]
- Sader, J.E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Sader, J.E.; Chon, J.W.M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969. [Google Scholar] [CrossRef] [Green Version]
- Pargellis, A. Evaporating and sputtering: Substrate heating dependence on deposition rate. J. Vac. Sci. Technol. A Vac. Surf. Film. 1989, 7, 27–30. [Google Scholar] [CrossRef]
- Mannhart, J.; Schlom, D.G. Oxide Interfaces-An Opportunity for Electronics. Science 2010, 327, 1607–1611. [Google Scholar] [CrossRef]
- Kroemer, H. Nobel Lecture: Quasielectric fields and band offsets: Teaching electrons new tricks. Rev. Mod. Phys. 2001, 73, 783. [Google Scholar] [CrossRef]
- Chung, H.-j.; Ohno, K.; Fukuda, T.; Composto, R.J. Self-Regulated Structures in Nanocomposites by Directed Nanoparticle Assembly. Nano Lett. 2005, 5, 1878–1882. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-j.; Ohno, K.; Fukuda, T.; Composto, R.J. Internal Phase Separation Drives Dewetting in Polymer Blend and Nanocomposite Films. Macromolecules 2007, 40, 384–388. [Google Scholar] [CrossRef]
- White, A.R.; Jalali, M.; Boufadel, M.; Sheng, J. Bacteria form drag-increasing streamers on a drop: Complementary fates of rising deep-sea oil droplets. Sci. Rep. 2020, 10, 4305. [Google Scholar] [CrossRef] [Green Version]
- White, A.R.; Jalali, M.; Sheng, J. A new ecology-on-a-chip microfluidic platform to study interactions of microbes with a rising oil droplet. Sci. Rep. 2019, 9, 13737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.-J.; Du, Y.-P.; Sun, Y.-D.; Ye, Q.-L.; Zhou, H. Wrinkling patterns in metal films sputter deposited on viscoelastic substrates. Thin Solid Film. 2017, 638, 230–235. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, S.H.; Lee, S.-J.; Lee, J.H.; Byeon, M.; Suh, D.H.; Choi, W.J. Facile fabrication of micro/nano-structured wrinkles by controlling elastic properties of polydimethylsiloxane substrates. Polymer 2021, 212, 123087. [Google Scholar] [CrossRef]
- Jeon, N.L.; Choi, I.S.; Whitesides, G.M.; Kim, N.Y.; Laibinis, P.E.; Harada, Y.; Finnie, K.R.; Girolami, G.S.; Nuzzo, R.G. Patterned polymer growth on silicon surfaces using microcontact printing and surface-initiated polymerization. Appl. Phys. Lett. 1999, 75, 4201–4203. [Google Scholar] [CrossRef] [Green Version]
AFM | Microscope | ||
---|---|---|---|
0 | 3.937 | 3.139 | 75.460 |
40 | NA | 5.904 | NA |
74 | 9.091 | 9.573 | 91.505 |
118 | 11.364 | 11.991 | 143.962 |
160 | 50 | 54.162 | 16.226 |
230 | NA | Inf | NA |
340 | Inf | Inf | 6.947 |
(MPa) | |
---|---|
0 | |
40 | |
130 | |
340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali-Mousavi, M.; Cheng, S.K.S.; Sheng, J. Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles. Nanomaterials 2023, 13, 1044. https://doi.org/10.3390/nano13061044
Jalali-Mousavi M, Cheng SKS, Sheng J. Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles. Nanomaterials. 2023; 13(6):1044. https://doi.org/10.3390/nano13061044
Chicago/Turabian StyleJalali-Mousavi, Maryam, Samuel Kok Suen Cheng, and Jian Sheng. 2023. "Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles" Nanomaterials 13, no. 6: 1044. https://doi.org/10.3390/nano13061044
APA StyleJalali-Mousavi, M., Cheng, S. K. S., & Sheng, J. (2023). Synthesis of Wrinkle-Free Metallic Thin Films in Polymer by Interfacial Instability Suppression with Nanoparticles. Nanomaterials, 13(6), 1044. https://doi.org/10.3390/nano13061044