Sodium Ion Pre-Intercalation of δ-MnO2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of MnO2 Electrodes
2.2. Synthesis of Na-MnO2 Electrodes
2.3. Fabrication of AZIBs
2.4. Materials Characterization
2.5. Electrochemical Performance Characterization
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, T.; Garg, A.K.; Gupta, A.; Madan, A.; Jain, P. Comprehensive review on latest advances on rechargeable batteries. J. Energy Storage 2023, 57, 106204. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, X.; Yu, M.; Niu, Z.; Cheng, F.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Xu, K. Electrolytes and interphases in lithium-ion batteries and beyond. Chem. Rev. 2014, 91, 11503–11618. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.-C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Song, M.; Tan, H.; Chao, D.; Fan, H.J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, F.; Luo, Z.; Fang, G.; Zhou, J.; Pan, A.; Liang, S. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018, 13, 168–174. [Google Scholar] [CrossRef]
- Du, M.; Liu, C.; Zhang, F.; Dong, W.; Zhang, X.; Sang, Y.; Wang, J.J.; Guo, Y.G.; Liu, H.; Wang, S. Tunable layered (Na, Mn) V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 2020, 7, 2000083. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, N.; Long, C.; Dong, B.; Fang, D.; Liu, Z.; Zhao, Y.; Li, X.; Fan, J.; Chen, S. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 2019, 29, 1906142. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.-G.; Qin, X.; Wang, Y.; You, Z.; Liu, H.; Shao, M. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 2020, 12, 34949–34958. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, L.; Lu, B.; Wu, X.; Liang, S.; Zhou, J. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem. 2022, 15, e202200348. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, M.; Qin, R.; Fang, J.; Ren, H.; Yi, H.; Liu, L.; Zhao, W.; Li, Y.; Yao, L. Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 2021, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sharpe, R.; He, K.; Li, C.; Saray, M.T.; Liu, T.; Yao, W.; Cheng, M.; Jin, H.; Wang, S. Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries. Nat. Sustain. 2022, 5, 890–898. [Google Scholar] [CrossRef]
- Zhai, D.; Li, B.; Xu, C.; Du, H.; He, Y.; Wei, C.; Kang, F. A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). J. Power Sources 2011, 36, 7860–7867. [Google Scholar] [CrossRef]
- Young, M.J.; Holder, A.M.; George, S.M.; Musgrave, C.B. Charge storage in cation incorporated α-MnO2. Chem. Mater. 2015, 27, 1172–1180. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 2019, 13, 10643–10652. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Wang, D.; Zhao, J.; Zhang, H. Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim. Acta 2017, 59, 344–354. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Gim, J.; Kim, S.; Song, J.; Pham, D.T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 17, 121–125. [Google Scholar] [CrossRef]
- Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. Reversible insertion properties of zinc-ion into manganese dioxide and its application for energy storage. Electrochem. Solid-State Lett. 2009, 12, A61. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Liu, Y.; Zhang, Y.; Liu, X.; Yan, D.; Huang, J.; Peng, S. Selection of Cu2+ for intercalation from the electronegativity perspective: Improving the cycle stability and rate performance of δ-MnO2 cathode material for aqueous zinc-ion batteries. Sci. China Mater. 2022, 9, 531–540. [Google Scholar] [CrossRef]
- Yang, J.; Yao, G.; Li, Z.; Zhang, Y.; Wei, L.; Niu, H.; Chen, Q.; Zheng, F. Highly flexible K-intercalated MnO2/carbon membrane for high-performance aqueous zinc-ion battery cathode. Small 2022, 18, 2205544. [Google Scholar]
- Xie, Q.; Cheng, G.; Xue, T.; Huang, L.; Chen, S.; Sun, Y.; Sun, M.; Wang, H.; Yu, L. Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery. Mater. Today Energy 2022, 24, 100934. [Google Scholar] [CrossRef]
- Li, G.; Huang, Z.; Chen, J.; Yao, F.; Liu, J.; Li, O.L.; Sun, S.; Shi, Z. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials. J. Mater. Chem. A 2020, 8, 1975–1985. [Google Scholar] [CrossRef]
- Xie, W.; Sun, M.; Li, Y.; Zhang, B.; Lang, X.; Zhu, Y.; Jiang, Q. Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors. Results Phys. 2019, 12, 1411–1416. [Google Scholar] [CrossRef]
- Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 24, 345–356. [Google Scholar] [CrossRef]
- Peng, H.; Fan, H.; Yang, C.; Tian, Y.; Wang, C.; Sui, J. Ultrathin δ-MnO₂ nanoflakes with Na⁺ intercalation as a high-capacity cathode for aqueous zinc-ion batteries. RSC Adv. 2020, 10, 17702–17712. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B 2016, 25, 210–218. [Google Scholar] [CrossRef]
- Chen, C.; Shi, M.; Zhao, Y.; Yang, C.; Zhao, L.; Yan, C. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem. Eng. J. 2021, 26, 130375. [Google Scholar] [CrossRef]
- Zhai, T.; Lu, X.; Ling, Y.; Yu, M.; Wang, G.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13−x. Adv. Mater. 2014, 26, 5869–5875. [Google Scholar] [CrossRef] [PubMed]
- Davoglio, R.A.; Cabello, G.; Marco, J.F.; Biaggio, S.R. Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochim. Acta 2018, 60, 428–435. [Google Scholar] [CrossRef]
- Miao, J.; Lin, H.; Mao, Z.; He, S.; Xu, M.; Li, Q. Electrochemical performance of Sn-doped δ-MnO2 hollow nanoparticles for supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 2689–2697. [Google Scholar] [CrossRef]
- Tan, Q.; Song, Y.; Zhou, X.; Yu, B.; Song, J.; Liu, Y. Electrochemically induced defects promotional high-performance binder-free MnO@CC cathodes for flexible quasi-solid-state zinc-ion battery. ACS Appl. Energy Mater. 2022, 5, 15510–15519. [Google Scholar] [CrossRef]
- Zeng, S.; Song, Y.; Shi, X.; Xu, W.; Zheng, D.; Wang, F.; Xu, C.; Lu, X. Crystal form modulation enables high-performance manganese dioxide cathode for aqueous zinc ion battery. J. Alloys Compd. 2022, 64, 165207. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Zhang, X.; Wang, S.; Han, J.; Zhao, Y.; Huang, Y.; Qin, J. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 2020, 36, 147630. [Google Scholar] [CrossRef]
- Qiu, C.; Liu, J.; Liu, H.; Zhu, X.; Xue, L.; Li, S.; Ni, M.; Zhao, Y.; Wang, T.; Savilov, S.V. Suppressed layered-to-spinel phase transition in δ-MnO2 via van der Waals interaction for highly stable Zn/MnO2 batteries. Small Methods 2022, 6, 2201142. [Google Scholar] [CrossRef]
- Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Wang, H.; Li, F.; Guan, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv. Mater. Interfaces 2019, 6, 1801506. [Google Scholar] [CrossRef]
- Pang, Q.; Sun, C.; Yu, Y.; Zhao, K.; Zhang, Z.; Voyles, P.M.; Chen, G.; Wei, Y.; Wang, X. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144. [Google Scholar] [CrossRef]
- Lee, J.; Ju, J.B.; Cho, W.I.; Cho, B.W.; Oh, S.H. Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 2013, 112, 138–143. [Google Scholar] [CrossRef]
- Shi, H.Y.; Ye, Y.J.; Liu, K.; Song, Y.; Sun, X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 2018, 130, 16597–16601. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656. [Google Scholar] [CrossRef] [Green Version]
- Ruan, P.; Xu, X.; Gao, X.; Feng, J.; Yu, L.; Cai, Y.; Gao, X.; Shi, W.; Wu, F.; Liu, W. Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks. Sustainable Mater. Technol. 2021, 28, e00254. [Google Scholar] [CrossRef]
- Yang, X.; Rogach, A.L. Electrochemical techniques in battery research: A tutorial for nonelectrochemists. Adv. Energy Mater. 2019, 9, 1900747. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Xue, W.; Chen, K.; Yang, C.; Feng, Q.; Zheng, D.; Xu, W.; Wang, F.; Lu, X. Sodium Ion Pre-Intercalation of δ-MnO2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries. Nanomaterials 2023, 13, 1075. https://doi.org/10.3390/nano13061075
Ding Y, Xue W, Chen K, Yang C, Feng Q, Zheng D, Xu W, Wang F, Lu X. Sodium Ion Pre-Intercalation of δ-MnO2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries. Nanomaterials. 2023; 13(6):1075. https://doi.org/10.3390/nano13061075
Chicago/Turabian StyleDing, Yuanhao, Weiwei Xue, Kaihao Chen, Chenghua Yang, Qi Feng, Dezhou Zheng, Wei Xu, Fuxin Wang, and Xihong Lu. 2023. "Sodium Ion Pre-Intercalation of δ-MnO2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries" Nanomaterials 13, no. 6: 1075. https://doi.org/10.3390/nano13061075
APA StyleDing, Y., Xue, W., Chen, K., Yang, C., Feng, Q., Zheng, D., Xu, W., Wang, F., & Lu, X. (2023). Sodium Ion Pre-Intercalation of δ-MnO2 Nanosheets for High Energy Density Aqueous Zinc-Ion Batteries. Nanomaterials, 13(6), 1075. https://doi.org/10.3390/nano13061075