Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis and Characterization
2.3. Batch Adsorption Procedure
3. Results and Discussion
3.1. Morphological and Chemical Characterization
3.2. Adsorption Study
3.2.1. Adsorption Performance of Graphene Oxide and PEI/GO
3.2.2. Adsorption Optimum Parameters
- Effect of pH
- Effect of Contact Time
- Effect of Adsorbate (Pb2+) Initial Concentrations
- Effect of Adsorbent (PEI/GO) Dosage
3.3. Kinetic and Isotherm Studies
3.3.1. Kinetic Study
3.3.2. Isotherm Study
3.4. Adsorption Thermodynamics
3.5. Proposed Adsorption Mechanism
3.6. Comparison with Literature
4. Conclusions
- PEI/GO showed better adsorption performance when compared to graphene oxide because of the formation of polymeric branches on the graphene oxide surface and, thus, the more adsorption active sites and possible interactions with Pb2+ ions.
- Batch adsorption experiments confirmed that the removal % of Pb2+ by PEI/GO is directly proportional to the solution pH (till pH = 6), PEI/GO dosage, and contact time. However, it is inversely proportional to the Pb2+ initial concentrations. However, all parameters were optimized to be used for the kinetic, isotherm, and thermodynamic investigations.
- The kinetic study revealed that while chemosorption was dominating at low Pb2+ concentrations, physisorption was dominating at high concentrations, and the adsorption rate was controlled by the boundary-layer diffusion step.
- The adsorption process was well-described by the Freundlich isotherm model, which implies the heterogeneity of the adsorption process.
- Thermodynamic results confirmed the endothermic nature and spontaneity of the adsorption process of Pb2+ on PEI/GO.
- Results confirmed that PEI/GO is a highly effective adsorbent for Pb2+ removal from water solutions with a maximum adsorption capacity of 64.94 mg Pb2+/g PEI/GO, which is better than many different reported adsorbents.
- These promising results will lead to new applications of PEI/GO in water and wastewater treatments. However, more studies are recommended to investigate the reusability and stability of PEI/GO under real industrial conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, M.; Kumar, A.; Lee, I.; Kumar, V.; Park, J.H.; Kim, H. Simultaneous capturing of mixed contaminants from wastewater using novel one-pot chitosan functionalized with EDTA and graphene oxide adsorbent. Environ. Pollut. 2022, 304, 119130. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Khan, M.; Lo, I.M.C. A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Res. 2016, 106, 259–271. [Google Scholar] [CrossRef]
- Ambika; Singh, P.P. Natural polymer-based hydrogels for adsorption applications. In Natural Polymers Based Green Adsorbents Water Treat, 1st ed.; Kalia, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–306. [Google Scholar] [CrossRef]
- Yu, Y.; Min, A.; Jung, H.J.; Theerthagiri, J.; Lee, S.J.; Kwon, K.-Y.; Choi, M.Y. Method development and mechanistic study on direct pulsed laser irradiation process for highly effective dechlorination of persistent organic pollutants. Environ. Pollut. 2021, 291, 118158. [Google Scholar] [CrossRef]
- Naik, S.S.; Lee, S.J.; Theerthagiri, J.; Yu, Y.; Choi, M.Y. Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. J. Hazard. Mater. 2021, 418, 126269. [Google Scholar] [CrossRef]
- Mustapha, S.; Shuaib, D.T.; Ndamitso, M.M.; Etsuyankpa, M.B.; Sumaila, A.; Mohammed, U.M.; Nasirudeen, M.B. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci. 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.O.; Ndukwe, A.O.; Asadu, C.O. Application of activated biomass waste as an adsorbent for the removal of lead (II) ion from wastewater. Emerg. Contam. 2020, 6, 259–267. [Google Scholar] [CrossRef]
- Çelebi, H.; Gok, G.; Gok, O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci. Rep. 2020, 10, 17570. [Google Scholar] [CrossRef]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.-S. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Pal, D.B.; Saini, R.; Srivastava, N.; Ahmad, I.; Alshahrani, M.Y.; Gupta, V.K. Waste biomass based potential bioadsorbent for lead removal from simulated wastewater. Bioresour. Technol. 2022, 349, 126843. [Google Scholar] [CrossRef] [PubMed]
- Tee, W.T.; Loh, N.Y.L.; Hiew, B.Y.Z.; Hanson, S.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y. Effective remediation of lead(II) wastewater by Parkia speciosa pod biosorption: Box-Behnken design optimisation and adsorption performance evaluation. Biochem. Eng. J. 2022, 187, 108629. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A.; Saber, O. Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: Kinetic, isotherm, and thermodynamic studies. RSC Adv. 2021, 11, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Al-Yaari, M.; Saleh, T.A. Mercury removal from water using a novel composite of polyacrylate-modified carbon. ACS Omega 2022, 7, 14820–14831. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Wang, X.; Zhao, G.; Hu, B.; Lu, Z.; Wen, T.; Chen, J.; Wang, X. Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Eng. J. 2020, 390, 124642. [Google Scholar] [CrossRef]
- Li, S.; Wan, Y.; Guo, S.; Luo, J. Ferric ions mediated defects narrowing of graphene oxide nanofiltration membrane for robust removal of organic micropollutants. Chem. Eng. J. 2021, 411, 128587. [Google Scholar] [CrossRef]
- Croitoru, A.; Ficai, A.; Ficai, D.; Trusca, R.; Dolete, G.; Andronescu, E.; Turculet, S.C. Chitosan/graphene oxide nanocomposite water purification. Materials 2020, 13, 1687. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Miran, W.; Rasool, K.; Nawaz, M.; Jang, J.; Lim, S.R.; Lee, D.S. Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv. 2017, 7, 9764–9771. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, Q.; Huang, X.; Qian, X. Surface functionalization of graphene oxide with hyperbranched polyamide-amine and microcrystalline cellulose for efficient adsorption of heavy metal ions. ACS Omega 2022, 7, 10944–10954. [Google Scholar] [CrossRef]
- Manna, A.; Imae, T.; Aoi, K.; Okada, M.; Yogo, T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles. Chem. Mater. 2001, 13, 1674–1681. [Google Scholar] [CrossRef]
- Xikhongelo, R.V.; Mtunzi, F.M.; Diagboya, P.N.; Olu-Owolabi, B.I.; Düring, R.A. Polyamidoamine-Functionalized Graphene Oxide-SBA-15 Mesoporous Composite: Adsorbent for Aqueous Arsenite, Cadmium, Ciprofloxacin, Ivermectin, and Tetracycline. Ind. Eng. Chem. Res. 2021, 60, 3957–3968. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Nazari, M.; Kohestanian, M.; Hosseini, S. Polyacrylamide-grafted magnetic reduced graphene oxide nanocomposite: Preparation and adsorption properties. Colloid Polym. Sci. 2019, 297, 917–926. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, P. Hydrophobic-polymer-grafted graphene oxide nanosheets as an easily separable adsorbent for the removal of tetrabromobisphenol A. Langmuir 2014, 30, 13699–13706. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of Graphene Oxide. Nano Lett. 2011, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Zhu, J.; Wang, Z.; Wang, Y.; Wang, S.; Yan, R.; Xu, Q. Highly efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism. J. Colloid Interface Sci. 2019, 542, 123–135. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectral Interpretation: A Systematic Approach, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar] [CrossRef]
- Oldani, M.; Schock, G. Characterization of ultrafiltration membranes by infrared spectroscopy, esca, and contact angle measurements. J. Memb. Sci. 1989, 43, 243–258. [Google Scholar] [CrossRef]
- Huang, X.; Bin, J.; Bu, H.; Jiang, G.; Zeng, M. Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohyd. Polym. 2011, 84, 1350–1356. [Google Scholar] [CrossRef]
- Arabi, M.; Hemati, S.; Amiri, M. Removal of lead ions from industrial wastewater: Removal methods review. Int. J. Epidemoil. Res. 2015, 2, 105–109. Available online: http://ijer.skums.ac.ir/article_11812_9b89af683a567da8c6e9b9b85c124cb4.pdf (accessed on 1 February 2023).
- Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Ho, Y.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Für Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URRS 1940, 12, 327–356. [Google Scholar]
- Siva, S.; Sudharsan, S.; Kannan, R.S. Synthesis, characterization and ion-exchange properties of novel hybrid polymer nanocomposites for selective and effective mercury(ii) removal. RSC Adv. 2015, 5, 79665–79678. [Google Scholar] [CrossRef]
- Yoshida, Z.I.; Ōsawa, E. Hydrogen bonding of phenol to π electrons of aromatics, polyolefins, heteroaromatics, fulvenes, and azulenes. J. Am. Chem. Soc. 1966, 88, 4019–4026. [Google Scholar] [CrossRef]
- Saleh, T.; Ali, I. Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. J. Environ. Chem. Eng. 2018, 6, 5361–5368. [Google Scholar] [CrossRef]
- Krishnan, K.; Sheela, A.; Anirudhan, T.S. Kinetic and equilibrium modeling of liquid-phase adsorption of lead and lead chelates on activated carbons. J. Chem. Technol. Biotechnol. 2003, 78, 642–653. [Google Scholar] [CrossRef]
- Xu, T.; Liu, X. Peanut shell activated carbon: Characterization, surface modification and adsorption of Pb2+ from aqueous solution. Chin. J. Chem. Eng. 2008, 16, 401–406. [Google Scholar] [CrossRef]
- Acharya, J.; Sahu, J.; Mohanty, C.; Meikap, B. Removal of lead(II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation. Chem. Eng. J. 2009, 149, 249–262. [Google Scholar] [CrossRef]
- Momcilovic, M.; Purenovic, M.; Bojic, A.; Zarubica, A.; Randelovic, M. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 2011, 276, 53–59. [Google Scholar] [CrossRef]
- Fernando, M.; Silva, R.; Silva, K. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl. Surf. Sci. 2015, 351, 95–103. [Google Scholar] [CrossRef]
- Ho, Y.; Ofomaja, A. Kinetic and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem. 2005, 40, 3455–3461. [Google Scholar] [CrossRef]
- Vilar, V.; Botelho, C.; Boaventura, R. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem. 2005, 40, 3267–3275. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M.; Citak, D.; Soylak, M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 2007, 149, 283–291. [Google Scholar] [CrossRef]
- Melichová, Z.; Hromada, L. Adsorption of Pb2+ and Cu2+ Ions from aqueous solutions on natural bentonite. Pol. J. Environ. Stud. 2013, 22, 457–464. Available online: http://www.pjoes.com/pdf-88998-22857?filename=Adsorption%20of%20Pb2_%20and.pdf (accessed on 1 February 2023).
- Mo, W.; He, Q.; Su, X.; Ma, S.; Feng, J.; He, Z. Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption. Appl. Clay Sci. 2017, 159, 68–73. [Google Scholar] [CrossRef]
- Irawan, C.; Nata, I.; Lee, C. Removal of Pb(II) and As(V) using magnetic nanoparticles coated montmorillonite via one-pot solvothermal reaction as adsorbent. J. Environ. Chem. Eng. 2019, 7, 103000. [Google Scholar] [CrossRef]
- Neelgund, G.; Aguilar, S.; Kurkuri, M.; Rodrigues, D.; Ray, R. Elevated adsorption of lead and arsenic over silver nanoparticles deposited on poly(amidoamine) grafted carbon nanotubes. Nanomaterials 2022, 12, 3852. [Google Scholar] [CrossRef]
- Nicola, R.; Costişor, O.; Ciopec, M.; Negrea, A.; Lazău, R.; Ianăşi, C.; Picioruş, E.-M.; Len, A.; Almásy, L.; Szerb, E.L.; et al. Silica-coated magnetic nanocomposites for Pb2+ removal from aqueous solution. Appl. Sci. 2020, 10, 2726. [Google Scholar] [CrossRef] [Green Version]
- Putz, A.-M.; Ivankov, O.I.; Kuklin, A.I.; Ryukhtin, V.; Ianăşi, C.; Ciopec, M.; Negrea, A.; Trif, L.; Horváth, Z.E.; Almásy, L. Ordered Mesoporous Silica Prepared in Different Solvent Conditions: Application for Cu(II) and Pb(II) Adsorption. Gels 2022, 8, 443. [Google Scholar] [CrossRef] [PubMed]
Technique | Advantages | Disadvantages |
---|---|---|
Precipitation |
|
|
Ion exchange |
|
|
Filtration/reverse osmosis |
|
|
Coagulation-flocculation |
|
|
Oxidation |
|
|
Adsorption |
|
|
Models | Equations | Description |
---|---|---|
Pseudo-1st-order model | Considers physisorption as the rate-limiting mechanism of the adsorption process [31]. | |
Pseudo-2nd-order model | Considers chemisorption as the rate-limiting mechanism of the adsorption process [32]. | |
Weber–Morris (W-M) diffusion model | Considers intraparticle diffusion as the rate-limiting mechanism of the adsorption process [33]. |
Models | Linear Equations | Parameters | Values | ||||
---|---|---|---|---|---|---|---|
Pb2+ Initial Concentration (mg/L) | |||||||
50 | 100 | 200 | 300 | 400 | |||
Pseudo-1st-order model | qe, exp (mg/g) | 9.98 | 19.8 | 37 | 53.6 | 62.8 | |
k1 (min−1) | 0.246 | 0.174 | 0.091 | 0.074 | 0.040 | ||
qe, cal (mg/g) | 9.70 | 18.94 | 36.53 | 52.80 | 60.81 | ||
R2 | 0.9391 | 0.9751 | 0.9625 | 0.9951 | 0.9748 | ||
Pseudo-2nd-order model | k2 (g/mg·min) | 0.038 | 0.012 | 0.003 | 0.002 | 0.001 | |
qe, cal (mg/g) | 10.27 | 20.42 | 41.23 | 60.58 | 74.26 | ||
R2 | 0.9997 | 0.9997 | 0.9981 | 0.9986 | 0.9886 | ||
W-M diffusion model | Kid (mg/g·min1/2) | 0.3195 | 0.8755 | 3.0012 | 1.4736 | 4.594 | |
C (mg/g) | 7.6095 | 12.716 | 15.734 | 40.467 | 17.594 | ||
R2 | 0.9666 | 0.9483 | 0.9887 | 0.985 | 0.9963 |
Models | Parameters | Values | |||
---|---|---|---|---|---|
Temperature (°C) | |||||
23 | 38 | 53 | 68 | ||
Pseudo-1st-order | qe, exp (mg/g) | 53.8 | 54.4 | 55.6 | 57.8 |
k1 (min−1) | 0.0615 | 0.0694 | 0.0665 | 0.0577 | |
qe, cal (mg/g) | 52.05 | 55.12 | 52.79 | 48.68 | |
R2 | 0.9822 | 0.9731 | 0.9905 | 0.9941 | |
Pseudo-2nd-order | k2 (g/mg·min) | 0.0018 | 0.0020 | 0.0021 | 0.0022 |
qe, cal (mg/g) | 59.17 | 59.52 | 60.24 | 62.11 | |
R2 | 0.9986 | 0.9987 | 0.9987 | 0.9989 | |
Weber–Morris (W-M) diffusion model | Kid (mg/g·min1/2) | 1.3098 | 1.8514 | 1.5429 | 1.0639 |
C (mg/g) | 9.2809 | 38.692 | 42.277 | 47.805 | |
R2 | 0.9865 | 0.9994 | 0.9994 | 0.972 |
Models | Equations | Description |
---|---|---|
Langmuir | Evaluates the process on a homogeneous monolayer without interaction between adsorbed ions [34] | |
Freundlich | Evaluates heterogeneous multilayer adsorption with the interaction between adsorbed ions [35] | |
Temkin | Evaluates the interaction between adsorbent and adsorbate [36] |
Models | Linear Equations | Parameters | Values | R2 |
---|---|---|---|---|
Langmuir | qm (mg/g) | 64.94 | 0.9855 | |
KL (L/mg) | 0.21 | |||
RL | 0.04 | |||
Freundlich | n | 3.65 | 0.9932 | |
KF (mg/g) | 19.07 | |||
Temkin | KT (L/g) | 0.32 | 0.9382 | |
bT (kJ/mol) | 21.22 |
Property | Temperature (°C) | |||
---|---|---|---|---|
23 | 38 | 53 | 68 | |
ΔG° (kJ/mol) | −1.00 | −2.05 | −3.10 | −4.15 |
ΔH° (kJ/mol) | 19.73 | |||
ΔS° (J/mol·K) | 0.07 |
Adsorbent | qm (mg/g) | Reference |
---|---|---|
Commercial activated carbon (AC) | 54.65 | Krishnan et al. (2003) [40] |
AC | 35 | Xu and Liu (2008) [41] |
AC | 43.86 | Acharya et al. (2009) [42] |
AC | 27.53 | Momcilovic et al. (2011) [43] |
AC nanocomposite | 14 | Fernando et al. (2015) [44] |
Palm kernel fiber | 40.20 | Ho and Ofomaja (2005) [45] |
Algal waste | 44 | Vilar et al. (2005) [46] |
Albizia lebbeck pods | 7.17 | Mustapha, et al. (2019) [8] |
Cassava peels | 50.1 | Thompson et al. (2020) [9] |
Brewed tea waste | 1.2 | Çelebi et al. (2020) [10] |
Sugarcane bagasse | 1.61 | Ezeonuegbu, et al. (2021) [11] |
Mango seeds cover with kernel Jamun seeds cover with kernel | 39.15 20.28 | Pall et al. (2022) [12] |
Parkia speciosa pod | 48.7 | Tee et al. (2022) [13] |
Turkish kaolinite clay | 31.75 | Sari et al. (2007) [47] |
Natural bentonite | 32.68 | Melichová, Z.; Hromada, L. (2013) [48] |
Bentonite composite | 4.6 | Mo et al. (2017) [49] |
Montmorillonite coated by amino magnetic nanoparticles | 38.15 | Irawan et al. (2019) [50] |
CNTs–PAMAM–Ag | 18.7 | Neelgund et al. (2022) [51] |
Silica-coated magnetic nanocomposites | 14.9 | Nicola et al. (2020) [52] |
Ordered mesoporous silica | 18.8 | Putz et al. (2022) [53] |
Polyethyleneimine -grafted graphene oxide | 64.94 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Yaari, M.; Saleh, T.A. Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide. Nanomaterials 2023, 13, 1078. https://doi.org/10.3390/nano13061078
Al-Yaari M, Saleh TA. Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide. Nanomaterials. 2023; 13(6):1078. https://doi.org/10.3390/nano13061078
Chicago/Turabian StyleAl-Yaari, Mohammed, and Tawfik A. Saleh. 2023. "Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide" Nanomaterials 13, no. 6: 1078. https://doi.org/10.3390/nano13061078
APA StyleAl-Yaari, M., & Saleh, T. A. (2023). Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide. Nanomaterials, 13(6), 1078. https://doi.org/10.3390/nano13061078