Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface
Abstract
:1. Introduction
2. Theoretical Analysis and Design Method
2.1. Design of Multifunctional Metasurface
2.2. Design of the Unit Structure
3. Results and Discussion
3.1. Polygonal Bessel Vortex Beams
3.2. Airy Beams
3.3. Airy Vortex-like Beams
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Beth, R. Mechanical Detection and Measurement of the Angular Momentum of Light. Phys. Rev. 1936, 50, 115–125. [Google Scholar] [CrossRef]
- Ge, F.; Chen, B.; Wang, Y.; Zhou, F.; Zheng, R.; Yang, X.; Qian, P.; Xu, N. A wideband balun-based microwave device for quantum information processing with nitrogenvacancy centers in diamond. J. Light. Technol. 2022, 40, 7572–7577. [Google Scholar] [CrossRef]
- Li, Z.; Ruan, Y.; Chen, P.; Tang, J.; Hu, W.; Xia, K.; Lu, Y. Liquid crystal devices for vector vortex beams manipulation and quantum information applications. Chin. Opt. Lett. 2021, 19, 112601. [Google Scholar] [CrossRef]
- Banerji, A.; Singh, R.P.; Banerjee, D.; Bandyopadhyay, A. Entanglement propagation of a quantum optical vortex state. Opt. Commun. 2016, 380, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Wang, C.; Liu, T.; Ren, Y. Generation of spiral optical vortex with varying OAM for micro-manipulation. Opt. Commun. 2022, 524, 128767. [Google Scholar] [CrossRef]
- Maji, S.; Brundavanam, M.M. Topological transformation of fractional optical vortex beams using computer generated holograms. J. Opt. 2018, 20, 045607. [Google Scholar] [CrossRef]
- Shao, W.; Huang, S.; Liu, X.; Chen, M. Free-space optical communication with perfect optical vortex beams multiplexing. Opt. Commun. 2018, 427, 545–550. [Google Scholar] [CrossRef]
- Karahroudi, M.K.; Moosavi, S.A.; Mobashery, A.; Parmoon, B.; Saghafifar, H. Performance evaluation of perfect optical vortices transmission in an underwater optical communication system. Appl. Opt. 2018, 57, 9148–9154. [Google Scholar] [CrossRef]
- Yan, X.; Guo, L.; Cheng, M.; Li, J. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication. Opt. Express 2018, 26, 12605–12619. [Google Scholar] [CrossRef]
- Engay, E.; Rodrigo, P.J. Nonlinear optical vortex coronagraph. Opt. Lett. 2020, 45, 1579–1582. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, K.; Zhang, X.; Deng, J.; Li, G.; Brasselet, E. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics 2020, 14, 658–662. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, X.; Niu, L.; Wang, K.; Yang, Z.; Liu, J. Generating terahertz perfect optical vortex beams by diffractive elements. Opt. Express 2020, 28, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, W.; Zhao, M.; Wang, J.; Zhang, Y.; Chen, A.; Guan, F.; Liu, X.; Shi, L.; Zi, J. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 2020, 14, 623–628. [Google Scholar] [CrossRef]
- Kitamura, K.; Kitazawa, M.; Noda, S. Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers. Opt. Express 2019, 27, 1045–1050. [Google Scholar] [CrossRef]
- Zhao, Q.; Dong, M.; Bai, Y.; Yang, Y. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer. Photonics Res. 2020, 8, 745–749. [Google Scholar] [CrossRef]
- Ma, H.; Li, X.; Zhang, H.; Tang, J.; Li, H.; Tang, M.; Wang, J.; Cai, Y. Optical vortex shaping via a phase jump factor. Opt. Lett. 2019, 44, 1379–1382. [Google Scholar] [CrossRef]
- Cookson, T.; Kalinin, K.; Sigurdsson, H.; Töpfer, J.D.; Alyatkin, S.; Silva, M.; Langbein, W.; Berloff, N.G.; Lagoudakis, P.G. Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge. Nat. Commun. 2021, 12, 2120. [Google Scholar] [CrossRef]
- Gong, L.; Wang, X.; Zhu, Z.; Lai, S.; Feng, H.; Wang, J.; Gu, B. Transversal energy flow of tightly focused off-axis circular polarized vortex beams. Appl. Opt. 2022, 61, 5076–5082. [Google Scholar] [CrossRef]
- Xia, T.; Cheng, S.; Tao, S. Two polygon-like beams generated by a modified interfering vortex spiral zone plate. Results Phys. 2021, 29, 104762. [Google Scholar] [CrossRef]
- Shen, Y.; Wan, Z.; Meng, Y.; Fu, X.; Gong, M. Polygonal vortex beams. IEEE Photonics J. 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, C.; Liu, T.; Wang, Z.; Yin, C.; Qiu, S.; Li, Z.; Wu, H. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt. Express 2020, 28, 26257–26266. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264–267. [Google Scholar] [CrossRef]
- Chen, R.P.; Ying, C.F. Beam propagation factor of an Airy beam. J. Optics 2011, 13, 085704. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, X.; Tu, J.; Ma, Q.; Wu, J.; Zhang, D. Acoustic non-diffracting Airy beam. J. Appl. Phys. 2015, 117, 104503. [Google Scholar] [CrossRef]
- Minovich, A.E.; Klein, A.E.; Neshev, D.N.; Pertsch, T.; Kivshar, Y.S.; Christodoulides, D.N. Airy plasmons: Non-diffracting optical surface waves. Laser Photonics Rev. 2014, 8, 221–232. [Google Scholar] [CrossRef]
- Broky, J.; Siviloglou, G.A.; Dogariu, A.; Christodoulides, D.N. Self-healing properties of optical Airy beams. Opt. Express 2008, 16, 12880–12891. [Google Scholar] [CrossRef] [Green Version]
- Efremidis, N.K.; Chen, Z.; Segev, M.; Christodoulides, D.N. Airy beams and accelerating waves: An overview of recent advances. Optica 2019, 6, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Siviloglou, G.A.; Christodoulides, D.N. Accelerating finite energy Airy beams. Opt. Lett. 2007, 32, 979–981. [Google Scholar]
- Porat, G.; Dolev, I.; Barlev, O.; Arie, A. Airy beam laser. Opt. Lett. 2011, 36, 4119–4121. [Google Scholar] [CrossRef] [Green Version]
- Campargue, G.; Zielinski, B.; Courvoisier, S.; Sarpe, C.; Winkler, T.; Sentfleben, A.; Bonacina, L.; Baumert, T.; Wolf, J.P. Live cells assessment of opto-poration by a single femtosecond temporal Airy laser pulse. AIP Adv. 2018, 8, 125105. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.; Chang, Q.; Chang, H.; Liu, W.; Ma, P.; Zhou, P. Higher-Order Airy patterns and their application in tailoring orbital angular momentum beams with fiber laser arrays. J. Light. Technol. 2021, 39, 4758–4768. [Google Scholar] [CrossRef]
- Chen, M.; Huang, S.; Liu, X.; Chen, Y.; Shao, W. Optical trapping and rotating of micro-particles using the circular Airy vortex beams. Appl. Phys. B 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Chen, H.; Liu, S.; Lin, Z. Abruptly autofocusing property and optical manipulation of circular Airy beams. Phys. Rev. A 2019, 99, 013817. [Google Scholar] [CrossRef]
- Shou, Q.; Kuang, W.; Liu, M.; Zhou, Z.; Chen, Z.; Hu, W.; Guo, Q. Two dimensional large-scale optical manipulation of microparticles by circular Airy beams with spherical and oblique wavefronts. Opt. Commun. 2022, 525, 128561. [Google Scholar] [CrossRef]
- Yessenov, M.; Free, J.; Chen, Z.; Johnson, E.G.; Lavery, M.P.; Alonso, M.A.; Abouraddy, A.F. Space-time wave packets localized in all dimensions. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Hall, L.A.; Abouraddy, A.F. Consequences of non-differentiable angular dispersion in optics: Tilted pulse fronts versus space-time wave packets. Opt. Express 2022, 30, 4817–4832. [Google Scholar] [CrossRef]
- Juhasz, T.; Loesel, F.H.; Kurtz, R.M.; Horvath, C.; Bille, J.F.; Mourou, G. Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 902–910. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Schachtler, D.; Fink, H.W. Creating Airy beams employing a transmissive spatial light modulator. Appl. Opt. 2016, 55, 6095–6101. [Google Scholar] [CrossRef]
- Szatkowski, M.; Masajada, J.; Augustyniak, I.; Nowacka, K. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Opt. Commun. 2020, 463, 125341. [Google Scholar] [CrossRef]
- Siemion, A. The magic of optics—An overview of recent advanced terahertz diffractive optical elements. Sensors 2020, 21, 100. [Google Scholar] [CrossRef]
- Cao, F.; Zhao, Y.; Yao, C.; Xie, C. All diffractive optical element setup for creating and characterizing optical vortices with high topological charges: Analytical models and numerical results. Opt. Commun. 2021, 495, 127119. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Zheng, Y.; Chen, X. Generalized nonlinear Snell’s law at χ2 modulated nonlinear metasurfaces: Anomalous nonlinear refraction and reflection. Opt. Lett. 2019, 44, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, X.; Wang, G.; Liu, S.; Zhang, L.; Zeng, C.; Wang, L.; Sun, Q.; Zhao, W.; Zhang, W. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface. Adv. Opt. Mater. 2019, 7, 1801365. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Yang, Y.; Kim, Y.; Rho, J. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat. Commun. 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Cui, X.; Bai, H. Hybrid metasurface-based broadband high gain stealth antenna. Opt. Express 2022, 30, 32833–32846. [Google Scholar] [CrossRef]
- Hermon, S.; Ma, A.; Yue, F.; Kubrom, F.; Intaravanne, Y.; Han, J.; Ma, Y.; Chen, X. Metasurface hologram for polarization measurement. Opt. Lett. 2019, 44, 4436–4438. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Xiong, J.; Yin, K.; Wu, S.T. 3D displays in augmented and virtual realities with holographic optical elements. Opt. Express 2021, 29, 42696–42712. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-dielectric synthetic-phase metasurfaces generating practical airy beams. ACS Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef]
- Li, J.; Zheng, C.; Li, J.; Wang, G.; Liu, J.; Yue, Z.; Hao, X.; Yang, Y.; Li, F.; Tang, T.; et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res. 2021, 9, 1939–1947. [Google Scholar] [CrossRef]
- Berry, M. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 1987, 34, 1401–1407. [Google Scholar] [CrossRef]
- Sarkar, S.; Gupta, V.; Kumar, M.; Schubert, J.; Probst, P.T.; Joseph, J.; König, T.A.F. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating. ACS Appl. Mater. Interfaces 2019, 11, 13752–13760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Liu, Y.; Wei, Z.; Liu, H. Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface. Nanomaterials 2023, 13, 1094. https://doi.org/10.3390/nano13061094
Guo K, Liu Y, Wei Z, Liu H. Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface. Nanomaterials. 2023; 13(6):1094. https://doi.org/10.3390/nano13061094
Chicago/Turabian StyleGuo, Kuangling, Yue Liu, Zhongchao Wei, and Hongzhan Liu. 2023. "Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface" Nanomaterials 13, no. 6: 1094. https://doi.org/10.3390/nano13061094
APA StyleGuo, K., Liu, Y., Wei, Z., & Liu, H. (2023). Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface. Nanomaterials, 13(6), 1094. https://doi.org/10.3390/nano13061094