Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Alloying and High-Temperature Oxidation Experiment
2.3. Materials Characterization
3. Results and Discussion
3.1. Phase Compositions and Microstructure Morphology
3.2. High-Temperature Oxidation Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.Y.; Sun, Q.Y.; Xin, S.W.; Chen, Y.N.; Wu, C.; Wang, H.; Xu, J.W.; Wan, M.P.; Zeng, W.D.; Zhao, Y.Q. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Alabort, E.; Tang, Y.T.; Barba, D.; Reed, R.C. Alloys-by-design: A low-modulus titanium alloy for additively manufactured biomedical implants. Acta Mater. 2022, 229, 117749. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Li, Y.L.; Song, P.; Wang, W.Q.; Lei, M.; Li, X.W. Microstructure and wear resistance of a Ni-WC composite coating on titanium grade 2 obtained by electroplating and electron beam remelting. Mater. Charact. 2020, 170, 110674. [Google Scholar] [CrossRef]
- Wen, K.; Zhang, C.W.; Gao, Y. Influence of gas pressure on the low-temperature plasma nitriding of surface-nanocrystallined TC4 titanium alloy. Surf. Coat. Technol. 2022, 436, 128327. [Google Scholar] [CrossRef]
- Fujita, K.; Ijiri, M.; Inoue, Y.; Kikuchi, S. Rapid nitriding of titanium alloy with fine grains at room temperature. Adv. Mater. 2021, 33, 2008298. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Hui, P.F.; Liu, F.Y.; Zhong, L.S.; Zhao, M.X.; Li, B.; Yan, F.X.; Lu, Z.X.; Ding, Y.C.; Xu, Y.H. A key to tune the grain size gradient of the TiC coating on titanium by interstitial carburization: The timing for pressing. J. Alloy. Compd. 2019, 817, 152725. [Google Scholar] [CrossRef]
- Chen, H.K.; Zhang, J.L.; Yang, F.J.; Lin, T.Y.; Zhang, J.X.; Cai, X. Implanting a Copper Ion into a TiO2 Nanorod Array for the Investigation on the Synergistic Antibacterial Mechanism between Mechanical Cracking and Chemical Damage. ACS Biomater. Sci. Eng. 2022, 8, 1464–1475. [Google Scholar] [CrossRef]
- Ryabchikov, A.I.; Sivin, D.O.; Bozhko, I.A.; Stepanov, I.B.; Shevelev, A.E. Microstructure of titanium alloy modified by high-intensity implantation of low-and high-energy aluminium ions. Surf. Coat. Technol. 2020, 391, 125722. [Google Scholar] [CrossRef]
- Wang, Z.M.; Jia, Y.F.; Zhang, X.C.; Yao, F.; Zhang, C.C.; Tu, S.T. Effects of Different Mechanical Surface Enhancement Techniques on Surface Integrity and Fatigue Properties of Ti-6Al-4V: A Review. Crit. Rev. Solid State Mater. Sci. 2019, 44, 445–469. [Google Scholar] [CrossRef]
- Damon, J.; Czink, S.; Schüßler, P.; Antusch, S.; Klein, A.; Send, S.; Dapprich, D.; Dietrich, S.; Schulze, V. Mechanical surface treatment of EBM Ti6Al4V components: Effects of the resulting surface layer state on fatigue mechanisms and service life. Mater. Sci. Eng. A 2022, 849, 143422. [Google Scholar] [CrossRef]
- Koshuro, V.; Fomina, M.; Zakharevich, A.; Fomin, A. Superhard Ta-O-N coatings produced on titanium using induction physical vapor deposition. Ceram. Int. 2022, 48, 19467–19483. [Google Scholar] [CrossRef]
- Yu, W.Q.; Wang, X.N.; Guo, Y.; Yang, S.H.; Zhou, Z.; Sun, X.L.; Zhang, R.W.; Guo, T.Q.; Zhou, Y.M.; Zhao, J.H. The osteogenesis performance of titanium modified via plasma-enhanced chemical vapor deposition: In vitro and in vivo studies. Biomed. Mater. 2020, 15, 055012. [Google Scholar] [CrossRef]
- Khorasani, M.; Gibson, I.; Ghasemi, A.H.; Havadi, E.; Rolfe, B. Laser subtractive and laser powder bed fusion of metals: Review of process and production features. Rapid Prototyp. J. 2023. [Google Scholar] [CrossRef]
- He, D.S.; Li, L.H.; Guo, W.; He, G.Z.; Peng, P.; Shao, T.W.; Huan, H.; Zhang, G.X.; Han, G.F.; Yan, J.F. Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening. Corros. Sci. 2021, 184, 109364. [Google Scholar] [CrossRef]
- Cecchel, S.; Montesano, L.; Cornacchia, G. Wear and Corrosion Characterization of a Ti-6Al-4V Component for Automotive Applications: Forging versus Selective Laser Melting Technologies. Adv. Eng. Mater. 2022, 24, 2200082. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Lu, M.Y.; Fan, Z.Q.; Huang, S.Q.; Huang, H. Laser deposition of wear-resistant titanium oxynitride/titanium composite coatings on Ti-6Al-4V alloy. Appl. Surf. Sci. 2020, 531, 147212. [Google Scholar] [CrossRef]
- Wang, C.D.; Wang, Y.P.; Bao, Z.L.; Dong, J.J.; Geng, Y.; Liu, S.F.; Wang, C.Y.; Nie, P. Characterization of microstructure and mechanical properties of titanium-based bioactive ceramics laser-deposited on titanium alloy. Ceram. Int. 2022, 48, 28678–28691. [Google Scholar] [CrossRef]
- Dai, J.J.; Li, S.Y.; Zhang, H.X. Microstructure and wear properties of self-lubricating TiB2-TiCxNy ceramic coatings on Ti-6Al-4V alloy fabricated by laser surface alloying. Surf. Coat. Technol. 2019, 369, 269–279. [Google Scholar] [CrossRef]
- Li, S.; Yamaguchi, T. High-temperature oxidation performance of laser-cladded amorphous TiNiSiCrCoAl high-entropy alloy coating on Ti-6Al-4V surface. Surf. Coat. Technol. 2022, 433, 128123. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2020, 134, 106619. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hagino, H. Formation of a titanium-carbide-dispersed hard coating on austenitic stainless steel by laser alloying with a light-transmitting resin. Vacuum 2018, 155, 23–28. [Google Scholar] [CrossRef]
- Du, M.Z.; Wang, L.L.; Gao, Z.N.; Yang, X.Y.; Liu, T.; Zhan, X.H. Microstructure and element distribution characteristics of Y2O3 modulated WC reinforced coating on Invar alloys by laser cladding. Opt. Laser Technol. 2022, 153, 108205. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.J.; Chen, C.Z.; Liu, J.L.; Zhao, L.J.; Dai, J.J. Fabrication of Co-Based Coatings on Titanium Alloy by Laser Cladding with CeO2 Addition. Mater. Manuf. Process. 2016, 31, 1461–1467. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.J.; Chew, Y.X.; Bi, G.J.; Du, X.Y.; Tian, H.F.; Chen, C.Z. Microstructure and mechanical behavior of the laser synthesized composites modified by micro/nano scale rare earth oxides. J. Alloy. Compd. 2022, 895, 162641. [Google Scholar] [CrossRef]
- Ding, L.; Hu, S.S.; Quan, X.M.; Shen, J.Q. Effect of Mo and nano-Nd2O3 on the microstructure and wear resistance of laser cladding Ni-based alloy coatings. Appl. Phys. A 2016, 122, 288. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Guo, J.; Xu, G.D.; Li, Z.Y.; Wei, S.Z. Effect of Nd2O3 on microstructure, corrosion and wear properties of laser cladding Zr-based amorphous composite coatings on AZ91D magnesium alloy. Appl. Surf. Sci. 2023, 611, 155587. [Google Scholar] [CrossRef]
- Bu, R.; Jin, A.X.; Sun, Q.; Zan, W.; He, R.L. Study on laser cladding and properties of AZ63-Er alloy for automobile engine. J. Mater. Res. Technol. 2020, 9, 5154–5160. [Google Scholar] [CrossRef]
- Li, J.N.; Yu, H.J.; Chen, C.Z.; Li, W. Effect of nano-Y2O3 on microstructure and diffusive behavior of Ti3Al/Al3Ti matrix composite coatings. Kov. Mater.-Met. Mater. 2012, 50, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.M.; Li, J.B.; Zhang, J.; Wen, B.Q.; Li, L.Q.; Wang, X.F.; Ren, S.X. Effect of La2O3 addition on wear properites of Ni60a/SiC coating using laser-cladding. Opt. Laser Technol. 2022, 148, 107640. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.X.; Yoon, J.H.; Cho, T.Y.; Lee, C.G.; He, Y.Z. The comparative study on microstructure and properties of nano-CeO2 and Sm2O3 particulate reinforced nickel-based composites by laser deposition. Appl. Surf. Sci. 2008, 254, 7446–7452. [Google Scholar] [CrossRef]
- Yu, H.J.; Meng, X.X.; Wang, Z.F.; Chen, C.Z. Influence of Scanning Speed on the Microstructure and Wear Resistance of Laser Alloying Coatings on Ti-6Al-4V Substrate. Materials 2022, 15, 5819. [Google Scholar] [CrossRef]
- Liu, Y.M.; Li, W.Y.; Xu, B.F.; Cai, X.; Li, L.H.; Chen, Q.L. The behavior and effect of rare earth CeO2 on in-situ TiC/Al composite. Metall. Mater. Trans. A—Phys. Metall. Mater. Sci. 2004, 35A, 2511–2515. [Google Scholar] [CrossRef]
- Li, W.P.; Wang, H.; Zhou, Y.H.; Zhu, Y.Y.; Lin, S.F.; Yan, M.; Wang, N. Yttrium for the selective laser melting of Ti-45Al-8Nb intermetallic: Powder surface structure, laser absorptivity, and printability. J. Alloy. Compd. 2021, 892, 161970. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Leary, M.; Sharabian, E.; Cordova, L.; Gibson, I.; Downing, D.; Bateman, S.; Brandt, M.; Rolfe, B. The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt. Laser Technol. 2022, 153, 108263. [Google Scholar] [CrossRef]
- Liu, L.; Wang, G.; Ren, K.; Di, Y.; Wang, L.; Rong, Y.; Wang, H. Marangoni flow patterns of molten pools in multi-pass laser cladding with added nano-CeO2. Addit. Manuf. 2022, 59, 103156. [Google Scholar] [CrossRef]
- Tian, Y.S.; Chen, C.Z.; Chen, L.X.; Huo, Q.H. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scr. Mater. 2006, 54, 847–852. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, Q.B.; Sun, M.L.; Wei, X.G.; Zhu, Y.M. Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl. Surf. Sci. 2001, 174, 191–200. [Google Scholar] [CrossRef]
- Hu, D.; Liu, Y.; Chen, H.; Liu, J.; Wang, M. Effect of TiC addition on the microstructure and properties of Ni3Ta-TaC reinforced Ni-based wear-resistant coating. Ceram. Int. 2021, 47, 23194–23202. [Google Scholar] [CrossRef]
- Liu, S.; Pang, M. Effect of TiB2 Content on Properties of Nickel-Coated Graphite Self-Lubricating Coating Prepared by Laser Cladding. Coatings 2021, 11, 1501. [Google Scholar] [CrossRef]
- Gong, X.; Chen, R.R.; Fang, H.Z.; Ding, H.S.; Guo, J.J.; Su, Y.Q.; Fu, H.Z. Synergistic effect of B and Y on the isothermal oxidation behavior of TiAl-Nb-Cr-V alloy. Corros. Sci. 2018, 131, 376–385. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Behúlová, M.; Babalová, E. Numerical Simulation of Temperature Fields during Laser Welding–Brazing of Al/Ti Plates. Materials 2023, 16, 2258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Meng, X.; Zhao, Z.; Chen, C.; Yu, H. Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy. Nanomaterials 2023, 13, 1112. https://doi.org/10.3390/nano13061112
Wang Z, Meng X, Zhao Z, Chen C, Yu H. Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy. Nanomaterials. 2023; 13(6):1112. https://doi.org/10.3390/nano13061112
Chicago/Turabian StyleWang, Zifan, Xiaoxi Meng, Zhihuan Zhao, Chuanzhong Chen, and Huijun Yu. 2023. "Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy" Nanomaterials 13, no. 6: 1112. https://doi.org/10.3390/nano13061112
APA StyleWang, Z., Meng, X., Zhao, Z., Chen, C., & Yu, H. (2023). Effect of Nano Nd2O3 on the Microstructure and High-Temperature Resistance of G@Ni Laser Alloying Coatings on Ti-6Al-4V Alloy. Nanomaterials, 13(6), 1112. https://doi.org/10.3390/nano13061112