Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential
Abstract
:1. Introduction
- The material has been synthesised from cheap and abundant raw materials (silicate and iron) using a process that is as simple as possible to keep costs as low as possible.
- The material has been designed with the reuse of the pollutant in mind. With a low-cost material design and components after phosphorous addition that allow the material to be reused directly, we will achieve a waste adsorbent with enormous added value.
2. Materials and Methods
2.1. Chemicals and Measurement Methods
2.2. Synthesis of Materials
2.3. Characterisation
2.4. Effect of Solution pH
2.5. Kinetic Studies
2.6. Equilibrium Studies
3. Results and Discussion
3.1. Characterisation of the Materials
3.2. Effect of Solution pH
3.3. Adsorption Kinetics
3.4. Equilibrium Studies
3.4.1. Iron Equilibrium Studies
3.4.2. Correlation between Phosphorus Adsorption and Iron Present in GSP-Fe
3.4.3. Phosphorus Equilibrium Studies
3.4.4. Effect of Ionic Strength and Temperature on Phosphorus Sorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EuChemS. The Periodic Table and Us. Available online: https://www.euchems.eu/the-periodic-table-and-us/ (accessed on 23 February 2023).
- Emsley, J. Nature’s Building Blocks: An A-Z Guide to the Elements, 1st ed.; Oxford University Press Inc.: Oxford, NY, USA, 2003. [Google Scholar]
- Martinez-Cabanas, M.; Lopez-Garcia, M.; Barriada, J.L.; Herrero, R.; Sastre de Vicente, M.E. Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem. Eng. J. 2016, 301, 83–91. [Google Scholar] [CrossRef]
- E.U. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Current Consolidated Version 2014; European Parliament: Strasbourg, France, 2020.
- U.S. E.P.A. Nutrient Pollution: The Issue. Available online: https://www.epa.gov/nutrientpollution/issue (accessed on 23 February 2023).
- Azam, H.M.; Alam, S.T.; Hasan, M.; Yameogo, D.D.S.; Kannan, A.D.; Rahman, A.; Kwon, M.J. Phosphorous in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. J. Environ. Chem. Eng. 2019, 26, 20183–20207. [Google Scholar] [CrossRef]
- E.U. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control); Current Consolidated Version 2011; European Parliament: Strasbourg, France, 2010.
- European Environment Agency. Industrial Reporting under the Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006. Available online: https://www.eea.europa.eu/data-and-maps/data/industrial-reporting-under-the-industrial-6 (accessed on 23 February 2023).
- Dougherty, W.J.; Fleming, N.K.; Cox, J.W.; Chittleborough, D.J. Phosphorus Transfer in Surface Runoff from Intensive Pasture Systems at Various Scales. J. Environ. Qual. 2004, 33, 1973–1988. [Google Scholar] [CrossRef] [PubMed]
- Schoumans, O.F.; Chardon, W.J.; Bechmann, M.E.; Gascuel-Odoux, C.; Hofman, G.; Kronvang, B.; Rubæk, G.H.; Ulén, B.; Dorioz, J.M. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: A review. Sci. Total Environ. 2014, 468–469, 1255–1266. [Google Scholar] [CrossRef]
- Pavlidis, G.; Tsihrintzis, V.A. Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: A Review. Water Resour. 2018, 32, 1–29. [Google Scholar] [CrossRef]
- European Environment Agency. Total Phosphorus in Lakes. Available online: https://www.eea.europa.eu/data-and-maps/daviz/total-phosphorus-in-lakes-2#tab-chart_1 (accessed on 23 February 2023).
- European Environment Agency. Phosphate in Rivers. Available online: https://www.eea.europa.eu/data-and-maps/daviz/phosphate-in-rivers-2/#tab-chart_1 (accessed on 23 February 2023).
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Suzuki, K.; Waki, M.; Yasuda, T.; Fukumoto, Y.; Kuroda, K.; Sakai, T.; Suzuki, N.; Suzuki, R.; Matsuba, K. Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater. Bioresour. Technol. 2010, 101, 9399–9404. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef]
- Grzmil, B.; Wronkowski, J. Removal of phosphates and fluorides from industrial wastewater. Desalination 2006, 189, 261–268. [Google Scholar] [CrossRef]
- Battistoni, P.; Carniani, E.; Fratesi, V.; Balboni, P.; Tornabuoni, P. Chemical−Physical Pretreatment of Phosphogypsum Leachate. Ind. Eng. Chem. Res. 2006, 45, 3237–3242. [Google Scholar] [CrossRef]
- Delgadillo-Velasco, L.; Hernández-Montoya, V.; Rangel-Vázquez, N.A.; Cervantes, F.J.; Montes-Morán, M.A.; Moreno-Virgen, M.d.R. Screening of commercial sorbents for the removal of phosphates from water and modeling by molecular simulation. J. Mol. Liq. 2018, 262, 443–450. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Y.; Zhan, W.; Guo, L.; Du, Y.; Zhang, T.C.; Du, D. Four stage precipitation for efficient recovery of N, P, and F elements from leachate of waste phosphogypsum. Miner. Eng. 2022, 178, 107420. [Google Scholar] [CrossRef]
- Mayer, B.K.; Gerrity, D.; Rittmann, B.E.; Reisinger, D.; Brandt-Williams, S. Innovative Strategies to Achieve Low Total Phosphorus Concentrations in High Water Flows. Crit. Rev. Environ. Sci. Technol. 2013, 43, 409–441. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Sun, Y.; Chen, Y.; Qian, J. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability. Chem. Eng. J. 2019, 360, 342–348. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, H.; Liu, Y.; Xue, L.; Dionysiou, D.D.; Yang, L.; Xing, B. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application. Chemosphere 2017, 185, 816–825. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D.; Dinu, M.V. Development of chitosan-poly(ethyleneimine) based double network cryogels and their application as superadsorbents for phosphate. Carbohydr. Polym. 2019, 210, 17–25. [Google Scholar] [CrossRef]
- 3500-Fe Iron determination; Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.D. (Eds.) Standard Methods For the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; pp. 3.65–3.68. [Google Scholar]
- 4500-P Phosphorus determination; Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.D. (Eds.) Standard Methods For the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; pp. 4.108–4.117. [Google Scholar]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Naderi, M. Chapter Fourteen—Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation; Tarleton, S., Ed.; Academic Press: Oxford, NY, USA, 2015; pp. 585–608. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Gómez-Carnota, D.; Barriada, J.L.; Herrero, R. Green development of iron doped silica gel materials for chromium decontamination. J. Environ. Chem. Eng. 2022, 10, 108258. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Reichenberg, D. Properties of Ion-Exchange Resins in Relation to their Structure. III. Kinetics of Exchange. J. Am. Chem. Soc. 1953, 75, 589–597. [Google Scholar] [CrossRef]
- Kalavathy, M.H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L.R. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci. 2005, 292, 354–362. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36, 2304–2318. [Google Scholar] [CrossRef]
- Sellaoui, L.; Guedidi, H.; Knani, S.; Reinert, L.; Duclaux, L.; Ben Lamine, A. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib. 2015, 387, 103–110. [Google Scholar] [CrossRef]
- Li, Z.; Sellaoui, L.; Dotto, G.L.; Bonilla-Petriciolet, A.; Ben Lamine, A. Understanding the adsorption mechanism of phenol and 2-nitrophenol on a biopolymer-based biochar in single and binary systems via advanced modeling analysis. Chem. Eng. J. 2019, 371, 1–6. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Zhang, Z.; Liu, S.; Lei, S.; Xiao, R. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J. Clean. Prod. 2017, 147, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wang, X.; Luo, W.; Sun, J.; Xu, Q.; Chen, F.; Zhao, J.; Wang, S.; Yao, F.; Wang, D.; et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresour. Technol. 2018, 247, 537–544. [Google Scholar] [CrossRef]
- Acelas, N.Y.; Martin, B.D.; López, D.; Jefferson, B. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere 2015, 119, 1353–1360. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- Williams, M. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; O’Neil, M.J., Chemistry, R.S.O., Eds.; John Wiley & Sons, Ltd.: Cambridge, UK, 2013; Volume 74, p. 2708. [Google Scholar]
Material | Particle Size | BET Surface (m2∙g−1) | Pore Volume (cm3∙g−1) | Average Pore Diameter (nm) |
---|---|---|---|---|
GSP | S-1 | 164.62 | 0.292 | 5.82 |
S-0.5 | 158.29 | 0.265 | 5.60 | |
S-0.25 | 131.83 | 0.217 | 5.54 | |
GSP washed with deionised water | S-1 | 239.51 | 0.436 | 5.92 |
S-0.5 | 283.22 | 0.446 | 6.31 | |
S-0.25 | 287.87 | 0.501 | 6.74 | |
GSP-Fe | S-1 | 422.12 | 0.457 | 4.97 |
S-0.5 | 447.75 | 0.472 | 4.58 | |
S-0.25 | 464.92 | 0.477 | 5.03 | |
GSP-Fe with P | S-1 | 470.86 | 0.450 | 4.60 |
Reaction | Kinetic Parameters | Boyd Lineal Model | |||||
---|---|---|---|---|---|---|---|
Particle Size | ci (mg∙L−1) | pH | Intercept | Pearson’s r | Experimental Student’s t | Critical Student’s t (95%) | |
Fe(II) sorption on GSP | S-1 | 50 | Nat. | 0.14 ± 0.05 | 0.990 | 2.94 | 1.80 |
S-1 | 80 | Nat. | 0.15 ± 0.05 | 0.991 | 2.88 | 1.78 | |
S-1 | 275 | Nat. | 0.03 ± 0.05 | 0.991 | 0.57 | 1.89 | |
S-0.5 | 80 | Nat. | 0.09 ± 0.09 | 0.980 | 0.92 | 2.02 | |
P sorption on GSP-Fe | S-1 | 33 | 2.1 | 0.065 ± 0.018 | 0.996 | 3.72 | 1.77 |
S-0.5 | 33 | 2.1 | 0.19 ± 0.04 | 0.979 | 4.97 | 1.78 |
Isotherm Model | Particle Size | Langmuir Model | Langmuir-Freundlich Model | Sellaoui et al. Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qo (mg∙g−1) | K (L∙mg−1) | R2 | Qo (mg∙g−1) | K (L∙mg−1) | n | R2 | Qo (mg∙g−1) | m | c1/2 (mg∙L−1) | R2 | E (kJ∙mol−1) | ||
Fe(II) sorption by GSP | S-1 | 23.9 ± 0.3 | 3.9 ± 0.4 | 0.959 | 23.7 ± 0.3 | 3.5 ± 0.5 | 0.83 ± 0.16 | 0.958 | 23.7 ± 0.3 | 1.2 ± 0.2 | 0.29 ± 0.04 | 0.958 | 34.5 |
S-0.5 | 23.2 ± 0.3 | 4.0 ± 0.4 | 0.956 | 22.9 ± 0.3 | 3.3 ± 0.4 | 0.71 ± 0.14 | 0.960 | 22.9 ± 0.3 | 1.4 ± 0.3 | 0.31 ± 0.04 | 0.960 | 34.3 | |
S-0.25 | 22.7 ± 0.3 | 8.2 ± 1.2 | 0.919 | 22.49 ± 0.05 | 4.19 ± 0.04 | 0.200 ± 0.010 | 0.998 | 22.49 ± 0.05 | 5.0 ± 0.2 | 238∙10−3 ± 2∙10−3 | 0.998 | 34.9 | |
Phosphorus sorption referred to the iron present on GSP-Fe | S-1 | 234 ± 6 | 0.46 ± 0.11 | 0.922 | 270 ± 24 | 0.29 ± 0.13 | 1.7 ± 0.4 | 0.958 | 270 ± 24 | 0.58 ± 0.12 | 3.4 ± 1.5 | 0.958 | 31.6 |
S-0.5 | 212 ± 6 | 1.1 ± 0.3 | 0.920 | 234 ± 10 | 0.9 ± 0.2 | 1.8 ± 0.2 | 0.983 | 234 ± 9 | 0.56 ± 0.07 | 1.1 ± 0.3 | 0.983 | 34.5 | |
S-0.25 | 278 ± 6 | 0.52 ± 0.09 | 0.967 | 297 ± 11 | 0.48 ± 0.08 | 1.40 ± 0.16 | 0.983 | 297 ± 11 | 0.71 ± 0.08 | 2.1 ± 0.4 | 0.983 | 32.9 |
Equilibrium | Particle Size | T (°C) | Langmuir Model | van ’t Hoff Equation | |||
---|---|---|---|---|---|---|---|
Qo (mg∙g−1) | K (L∙mg−1) | R2 | ΔH° (kJ∙mol−1) | Pearson’s r | |||
Phosphorus sorption referred to the iron present on GSP-Fe | S-1 | 8 | 134 ± 6 | 0.65 ± 0.20 | 0.899 | −23.7 ± 0.6 | 0.999 |
20 | 234 ± 6 | 0.46 ± 0.11 | 0.922 | ||||
40 | 262 ± 12 | 0.24 ± 0.06 | 0.916 | ||||
52 | 366 ± 21 | 0.17 ± 0.05 | 0.903 | ||||
S-0.25 | 8 | 129 ± 6 | 1.0 ± 0.3 | 0.915 | −33.7 ± 0.9 | 0.999 | |
20 | 278 ± 6 | 0.52 ± 0.09 | 0.967 | ||||
52 | 358 ± 22 | 0.14 ± 0.04 | 0.892 |
Material | Qo (mg∙g−1) | Reference |
GSP-Fe | 366 | This work |
Commercial granular ferric hydroxide | 105 | [20] |
La(OH)3 loaded magnetic mesoporous silica nanospheres | 54.2 | [23] |
Double network CS/GA.20/PEI.15 cryogel | 111.9 | [25] |
Sugarcane harvest Mg-biochar composite | 399 | [38] |
Fe-impregnated waste activated sludge biochar | 111.0 | [39] |
Hydrated iron oxides | 111.1 | [40] |
Lanthanum-modified zeolites | 61.1 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Carnota, D.; Barriada, J.L.; Rodríguez-Barro, P.; Sastre de Vicente, M.E.; Herrero, R. Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential. Nanomaterials 2023, 13, 1167. https://doi.org/10.3390/nano13071167
Gómez-Carnota D, Barriada JL, Rodríguez-Barro P, Sastre de Vicente ME, Herrero R. Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential. Nanomaterials. 2023; 13(7):1167. https://doi.org/10.3390/nano13071167
Chicago/Turabian StyleGómez-Carnota, David, José L. Barriada, Pilar Rodríguez-Barro, Manuel E. Sastre de Vicente, and Roberto Herrero. 2023. "Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential" Nanomaterials 13, no. 7: 1167. https://doi.org/10.3390/nano13071167
APA StyleGómez-Carnota, D., Barriada, J. L., Rodríguez-Barro, P., Sastre de Vicente, M. E., & Herrero, R. (2023). Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential. Nanomaterials, 13(7), 1167. https://doi.org/10.3390/nano13071167