Multifunctional Nanoparticles and Nanopesticides in Agricultural Application
Abstract
:1. Introduction
2. Nanopesticide Definition
3. Nanopesticides Prepared as Inorganic Nanoparticles
3.1. Mesoporous Silica Nanoparticles (MSNs)
3.2. Graphene Oxide (GO)
3.3. Metal–Organic Frameworks (MOFs)
3.4. Clay Minerals
3.5. Other Inorganic Materials
Material | Pesticide | Target | Performance | Reference |
---|---|---|---|---|
MSN | Mildamine | Cucumber | Enhanced uptake by cucumber | [58] |
PRO@DMON–GA–Fe(III) | Prochloraz | Rice | Better fungicidal activity against Magnaporthe oryzae with longer duration | [59] |
Pro@HMS–TA–Cu | Prochloraz | Oilseed rape leaves | Better antifungal activity against Sclerotinia sclerotiorum and lower toxicity against zebrafish compared with prochloraz technical | [60] |
Nano-AVM–GO | Avermectin | Diamondback moth | Better insecticidal effect | [39] |
MOFs | Cyfluthrin | - | Slow-release performance | |
Fe(III)-MOFs | Azoxystrobin | Wheat seed | Increased weight of the aboveground parts of wheat | [61] |
IV-Porphyrin-MOFs | Tebuconazole | Pathogenic microbes | Good fungicidal effect | [62] |
AM@CuBTC | Avermectin | Pine wilt disease | Improved solubility, photolysis performance, and pesticide efficacy | [63] |
ZIF-90-KSM | Kasugamycin | Rice | Great potential synergistic antifungal functions and provides an eco-friendly approach to managing rice diseases | [64] |
PRCRC | Chlorpyrifos | Tick | Excellent pH sensitivity and excellent insecticidal performance | [65] |
MSN | Zobactamide | Phomopsis asparagi | Good bacteriostatic effect | [66] |
Biochar | Glyphosate | Weeds | Good control of weeds | [67] |
ZuO | Chunleimycin | - | Excellent UV blocking | [68] |
GO | Pyridaben Chlorpyrifos Cypermethrin | - | Improves insecticide efficiency | [69] |
GO-MSN10 | Camptothecin | - | Good slow-release performance | [70] |
PCM-SS/PMT | Prometryn | Grass | Effective control and improved utilization rate | [54] |
4. Nanopesticides Prepared with Organic Materials
4.1. Natural Polymers
4.2. Synthetic Organic Materials
Material | Pesticide | Target | Performance | Reference |
---|---|---|---|---|
AL/PEG–acetamiprid | Acetamiprid | Xanthogaleruca luteola | Increased insecticidal performance | [84] |
ABA@AL-CTAB | Abscisic acid | Rice | Slow-release performance and resistance to photolysis | [85,86] |
SPc–calcium glycine | Calcium glycine | Tomato mosaic virus | Improved control of virus | [87] |
Polyhydroxybutyrate–trifluralin | Trifluralin | Barnyard grass | Improved photostability and herbicidal activity | [88] |
Chitosan–polylactic acid | Chlorpyrifos | - | Good slow-release effect | [89] |
Chitosan–sodium tripolyphosphate | Hexazole alcohol | - | Good bacteriostatic effect | [90] |
Beeswax–corn oil–liposomes | Deltamethrin | Resistance to photolysis | [91] | |
AL-azo-H@AVM | Avermectin | - | Excellent UV-blocking and controlled-release performance | [92] |
AVM@P-Zein | Avermectin | - | Excellent UV-blocking and controlled-release performance | [93] |
SPc–dinotefuran | Dinotefuran | Aphids | Better distribution and enhanced uptake | [94] |
SPc–chitosan | Chitosan | Phytophthora infestans | Enhanced control effect | [95] |
Polyhydroxyalkanoate | Chlorhexine | - | Greater herbicidal activity | [96] |
5. Synergistic Mechanisms of Nanopesticides and Nanocarriers
5.1. Nanocarrier Increases the Contact Area between Pesticide and Target Pest
5.2. Nanocarrier Promotes the Plant Uptake of Pesticide
5.3. Nanopesticide Shows Increased Adhesion to Leaves
5.4. Nanocarriers Regulate the Release of Pesticides
6. Safety Evaluation of Nanopesticides and Nanoparticles
6.1. Toxic Mechanism of Nanomaterials
6.2. Study of the Ecotoxicology of Nanopesticides
7. Advanced Applications and Outlook for Nanopesticides
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Jiang, Q.H.; Shen, J. Current state of research in synergistic mechanisms of nanopesticides and their carriers. J. Plant Prot. 2022, 49, 366–373. [Google Scholar]
- Bratovcic, A. Nanomaterials in food processing and packaging, its toxicity and food labeling. Acta Sci. Nutr. Health 2020, 4, 7–13. [Google Scholar] [CrossRef]
- Slattery, M.; Harper, B.; Harper, S. Pesticide encapsulation at the nanoscale drives changes to the hydrophobic partitioning and oxicity of an active ingredient. Nanomaterials 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Elabasy, A.; Shoaib, A.; Waqas, M.; Shi, Z.; Jiang, M. Cellulose nanocrystals loaded with thiamethoxam: Fabrication, characterization, and evaluation of insecticidal activity against Phenacoccus solenpsis Tinsley (Hemiptera: Pseudococcidae). Nanomaterials 2020, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Zaidi, S.J. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef]
- Spanos, A.; Athanasiou, K.; Ioannou, A.; Fotopoulos, V.; Krasia-Christoforou, T. Functionalized magnetic nanomaterials in gricultural applications. Nanomaterials 2021, 11, 3106. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Manikandan, A.; Thirunavukkarasu, M.; Rahale, C.S. Nano-Fertilizers for Balanced Crop Nutrition. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 69–80. [Google Scholar]
- Salama, D.M.; Osman, S.A.; Abd El-Aziz, M.E.; Abd Elwahed, M.S.A.; Shaaban, E.A. Effect of Zinc Oxide Nanoparticles on the Growth, Genomic DNA, Production and the Quality of Common Dry Bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 2019, 18, 101083. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: From Field to Plate. Food Res. Int. 2015, 69, 381–400. [Google Scholar] [CrossRef]
- Mali, S.C.; Raj, S.; Trivedi, R. Nanotechnology a Novel Approach to Enhance Crop Productivity. Biochem. Biophys. Rep. 2020, 24, 100821. [Google Scholar]
- Yan, S.; Qian, J.; Cai, C.; Ma, Z.Z.; Li, J.H.; Yin, M.Z.; Ren, B.Y.; Shen, J. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 2020, 93, 449–459. [Google Scholar] [CrossRef]
- Yan, S.; Ren, B.Y.; Shen, J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 2021, 28, 21–34. [Google Scholar] [CrossRef]
- Yan, S.; Ren, B.Y.; Zeng, B.; Shen, J. Improving RNAi efficiency for pest control in crop species. BioTechniques 2020, 68, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1823–1867. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.H.; Peters, K. Nanosuspensions for the formulation of poorly soluble drugs: I. preparation by a size-reduction tecnique. Int. J. Pharm. 1998, 160, 229–237. [Google Scholar] [CrossRef]
- Yang, D.S.; Cui, B.; Wang, C.X.; Zhao, X.; Zeng, Z.H.; Wang, Y.; Sun, C.J.; Liu, G.Q.; Cui, H.X. Preparation and characterization of emamectin benzoate solid nanodispersion. J. Nanomater. 2017, 2017, 6560780. [Google Scholar] [CrossRef] [Green Version]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nanoenabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Kumari, M.; Pandey, S.; Bhattacharya, A.; Mishra, A.; Nautiyal, C.S. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiol. Biochem. 2017, 121, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016, 65, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Kheiri, A.; Moosawi Jorf, S.A.; Malihipour, A.; Saremi, H.; Nikkhah, M. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, A.; Sathiyabama, M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int. J. Biol. Macromol. 2016, 84, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, H.A.; Khairy, M.; Elsaid, S.; Rashwan, F.A.; Abdel-Hafez, H.F. Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. J. Agric. Food Chem. 2018, 66, 5491–5498. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Yan, S.; Hu, Q.; Li, J.H.; Chao, Z.J.; Cai, C.; Yin, M.Z.; Du, X.G.; Shen, J. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides. ACS Sustain. Chem. Eng. 2019, 7, 17406–17413. [Google Scholar] [CrossRef]
- Suresh Kumar, R.S.; Shiny, P.J.; Anjali, C.H.; Jerobin, J.; Goshen, K.M.; Magdassi, S.; Mukherjee, A.; Chandrasekaran, N. Distinctive effects of nano-sized permethrin in the environment. Environ. Sci. Pollut. Res. Int. 2013, 20, 2593–2602. [Google Scholar] [CrossRef]
- Prudnikova, S.V.; Boyandin, A.N.; Kalacheva, G.S.; Sinskey, A.J. Degradable polyhydroxyalkanoates as herbicide carriers. J. Polym. Environ. 2013, 21, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.B.; He, S.; Liu, Y.; Geng, Q.Q.; Ding, G.L.; Guo, M.C.; Deng, Y.F.; Zhu, J.L.; Li, J.Q.; Cao, Y.S. Preparation and characterization of novel functionalized prochloraz microcapsules using silica-alginate-elements as controlled release carrier materials. ACS Appl. Mater. Interfaces 2014, 6, 11783–11790. [Google Scholar] [CrossRef]
- Cao, L.D.; Zhou, Z.L.; Niu, S.J.; Cao, C.; Li, X.H.; Shan, Y.P.; Huang, Q.L. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 2018, 66, 6594–6603. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Zhao, P.; Zhou, Z.; Cao, C.; Li, F.; Huang, Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J. 2018, 348, 244–254. [Google Scholar] [CrossRef]
- Xu, C.; Shan, Y.; Bilal, M.; Xu, B.; Cao, L.; Huang, Q. Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding. Chem. Eng. J. 2020, 395, 125093. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Murali, S.; Cai, W.W.; Li, X.S.; Suk, J.W.; Jeffrey, R.P.; Rodney, S.R. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.K.; Pumera, M. Covalent chemistry on graphene. Chem. Soc. Rev. 2013, 42, 3222. [Google Scholar] [CrossRef]
- Xia, Z.; Leonardi, F.; Gobbi, M. Electrochemical Functionalization of Graphene at the Nanoscale with Self Assembling Diazonium Salts. ACS Nano 2016, 10, 7125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.K.; Oh, Y.; Jung, H. In uences of carboxyl functionalization of intercalators on exfoliation of graphite oxide: A molecular dynamics simulation. Phys. Chem. Chem. Phys. 2018, 20, 28616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Song, S.J.; Zhang, Z.J.; Shen, J. Studies on the delivery of avermectin by graphene oxide and its insect resistance. In Proceedings of the First Agricultural Chemistry Symposium of the Chinese Chemical Society, Yangzhou, China, 6–8 December 2019. (In Chinese). [Google Scholar]
- Wang, X.; Xie, H.; Wang, Z.; He, K.; Jing, D. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ. Sci. Nano 2018, 6, 75–84. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Sheng, M.; Cui, S.; Wang, Z.; Zhang, X.; Yang, C.; Yu, Z.; Zhang, Y.; Tian, S.; et al. Enhanced adhesion of carbon nanotubes by dopamine modification. Langmuir 2019, 35, 4527–4533. [Google Scholar] [CrossRef]
- Wang, P.L.; Xie, L.H.; Joseph, E.A.; Li, J.R.; Zhou, H.C. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638–10690. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; Chu, C.; Chen, W.; Liu, G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 2019, 6, 1801526. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.H. Construction of Multifunctional MOF Platform and Its Application in Pesticide Sensing and Degradation; Nanjing Agricultural University: Nanjing, China, 2020. (In Chinese) [Google Scholar]
- Shamraja, S.N.; Leena, V.; Shefali, M.; Virendra, K.R. Polysaccharide based metal organic frameworks (polysaccharide-MOF): A review. Coord. Chem. Rev. 2019, 396, 1–21. [Google Scholar]
- Feng, P.; Chen, J.; Fan, C.; Huang, G.; Lin, B. An eco-friendly MIL-101@CMCS double-coated dinotefuran for long-acting active release and sustainable pest control. J. Clean. Prod. 2020, 265, 121851. [Google Scholar] [CrossRef]
- Shan, Y.; Xu, C.; Zhang, H.; Chen, H.; Bilal, M.; Niu, S. Polydopamine-modified metal-organic frameworks, NH2-Fe-MIL-101, as pH-sensitive nanocarriers for controlled pesticide release. Nanomaterials 2020, 10, 2000. [Google Scholar] [CrossRef] [PubMed]
- Hermosin, M.C.; Calderón, M.J.; Aguer, J.P.; Cornejo, J. Organoclays for controlled release of the herbicide fenuron. Pest Manag. Sci. 2001, 57, 803–809. [Google Scholar] [CrossRef]
- Celis, R.; Hermosín, M.C.; Carrizos, M.J. Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone. J. Agric. Food Chem. 2002, 50, 2324–2330. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Dong, H. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J. Agric. Food Chem. 2008, 56, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Undabeytia, T.; Galan-jimenez, M.C.; Gomez-pantoja, E.; Vazquez, J.; Casal, B.; Bergaya, F. Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl. Clay Sci. 2013, 81, 382–389. [Google Scholar] [CrossRef]
- Cai, D.Q.; Wang, L.H.; Zhang, G.L. Controlling pesticide loss by natural porous micro/nano composites: Straw ash-based biochar and biosilica. ACS Appl. Mater. Interfaces 2013, 5, 9212–9216. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhu, X.F.; Chen, X.; Liu, Y.N.; Gong, Y.C.; Yuan, G.L. Defense and inhibition integrated mesoporous nanoselenium delivery system against tomato gray mold. Environ. Sci. Nano 2020, 7, 210–227. [Google Scholar] [CrossRef]
- Xiang, Y.; Han, J.; Zhang, G.; Zhan, F.; Cai, D.; Wu, Z. Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide. ACS Sustain. Chem. Eng. 2018, 6, 3649–3658. [Google Scholar] [CrossRef]
- Ihegwuagu, N.E.; Sha’ato, R.; Tor-anyiin, T.A.; Nnamonu, L.A.; Buekes, P.; Sone, B. Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New J. Chem. 2016, 40, 1777. [Google Scholar] [CrossRef]
- El-Safty, S.A.; Shenashen, M.A.; Ismael, M.; Khairy, M. Encapsulation of proteins into tunable and giant mesocage alumina. Chem. Commun. 2012, 48, 6708–6710. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, A.; Shenashen, M.A.; Khairy, M. Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths. Colloids Surf. B Biointerfaces 2013, 103, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.B.; Xu, C.L.; Huang, Q.L.; Cao, L.D.; Teng, F.F.; Zhao, P.Y.; Jia, M.H. Size Effect of Mesoporous Silica Nanoparticles on Pesticide Loading, Release, and Delivery in Cucumber Plants. Appl. Sci. 2021, 11, 575. [Google Scholar] [CrossRef]
- You, L.; Wang, S.J.; Yao, Y.J.; Yu, S.W.; Li, A.; Wang, Y.F.; Song, J.H.; Huo, Z.Y. Degradable Self-Destructive Redox-Responsive System Based on Mesoporous Organosilica Nano-Vehicles for Smart Delivery of Fungicide. Nanomaterials 2022, 12, 4249. [Google Scholar]
- Shi, L.; Liang, Q.; Zang, Q.; Lv, Z.; Meng, X.; Feng, J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal–Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. Nanomaterials 2022, 12, 2885. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Cao, L.; Muhammad, B.; Xu, B.; Huang, Q. Iron-based porous metal–organic frameworks with crop nutritional function as carriers for controlled fungicide release. J. Colloid Interf. Sci. 2020, 566, 383–393. [Google Scholar] [CrossRef]
- Tang, J.; Ding, G.; Niu, J.; Zhang, W.; Tang, G.; Liang, Y.; Fan, C.; Dong, H.; Yang, J.; Li, J.; et al. Preparation and characterization of tebuconazole metal-organic framework-based microcapsules with dual-microbicidal activity. Chem. Eng. J. 2019, 359, 225–232. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Xin, X.; Xu, X.; Wang, G.; Gao, S.; Qiao, L.; Yin, S.; Liu, H.; Jia, C.; et al. Design and Preparation of Avermectin Nanopesticide for Control and Prevention of Pine Wilt Disease. Nanomaterials 2022, 12, 1863. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, S.; Dong, H.; Yu, S.; Jia, H.; Wang, J.; Yao, Y.; Wang, Y.; Song, J.; Huo, Z. Zeolitic Imidazole Framework-90-Based Pesticide Smart-Delivery System with Enhanced Antimicrobial Performance. Nanomaterials 2022, 12, 3622. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, G.; Chen, C.; Liu, B.; Cai, D.; Wu, Z. Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 2017, 6, 1192–1201. [Google Scholar] [CrossRef]
- Gao, Y.H.; Kaziem, A.E.; Zhang, Y.H.; Xiao, Y.N.; He, S.; Li, J.H. A hollow mesoporous silica and poly(diacetone acrylamide) composite with sustained-release and adhesion properties. Microporous Mesoporous Mater. 2018, 255, 15–22. [Google Scholar] [CrossRef]
- Chen, C.W.; Zhang, G.L.; Dai, Z.Y.; Xiang, Y.B.; Liu, B.; Bian, P.; Zheng, K.; Wu, Z.Y.; Cai, D.Q. Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chem. Eng. J. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, Y.H.; Fan, C.; Dong, H.Q.; Yang, J.L.; Tang, J.Y.; Tang, G.; Wang, W.C.; Jiang, N.; Cao, Y.S. Preparation of kasugamycin conjugation based on ZnO quantum dots for improving its effective utilization. Chem. Eng. J. 2019, 361, 671–679. [Google Scholar] [CrossRef]
- Wang, X.P.; Xie, H.C.; Wang, Z.Y. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf. B Biointerfaces 2019, 173, 632–638. [Google Scholar] [CrossRef]
- Fonsec, L.C.; Sous, M.; Mai, L.S. Understanding the driving forces of camptothecin interactions on the surface of nanocomposites based on graphene oxide decorated with silica nanoparticles. Nanoscale Adv. 2020, 2, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Grillo, R.; Clemente, Z.; Oliveira, J.L.D.; Campos, E.V.R.; Chalupe, V.C.; Jonsson, C.M. Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. J. Hazard. Mater. 2015, 286, 562–572. [Google Scholar] [CrossRef]
- Liang, W.; Yu, A.; Wang, G.; Zheng, F.; Hu, P.; Jia, J.; Xu, H. A novel water-based chitosan-la pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth. Carbohydr. Polym. 2018, 199, 437–444. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Lv, X.; He, L.H.; Shi, H.; Liao, S.Y.; Liu, C.Y.; Huang, Q.Q.; Li, X.Y.; He, X.T.; Chen, H.T.; et al. Dual-action pesticide carrier that continuously induces plant resistance, enhances plant anti-tobacco mosaic virus-TMV activity, and pro motes plant growth. J. Agric. Food Chem. 2019, 67, 10000–10009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, Y.; Zhu, M.; Shuang, J.; Gong, J. Solid-liquid phase equilibrium and thermodynamic analysis of prothioconazole in mono-solvents and binary solvents from 283.15 K to 313.15 K. J. Mol. Liq. 2017, 240, 162–171. [Google Scholar] [CrossRef]
- Figueiras, A.; Sarraguça, J.M.G.; Carvalho, R.A.; Pais, A.A.C.C.; Veiga, F.J. Interaction of omeprazole with a methylated derivative of β-cyclodextrin: Phase solubility, NMR spectroscopy and molecular simulation. Pharm. Res. 2017, 24, 377–389. [Google Scholar] [CrossRef]
- Jadhav, C.; Khillare, L.D.; Bhosle, M.R. Efficient sonochemical protocol for the facile synthesis of dipyrimido-dihydropyridine and pyrimido[4,5-d]pyrimidines in aqueous β-cyclodextrin. Synth. Commun. 2018, 48, 233–246. [Google Scholar] [CrossRef]
- Shen, C.Y.; Yang, X.H.; Wang, Y.; Chen, Z.C. Complexation of capsaicin with β-cyclodextrins to improve pesticide formulations: Effect on aqueous solubility, dissolution rate, stability and soil adsorption. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 263–274. [Google Scholar] [CrossRef]
- Pan, H.; Li, W.J.; Wu, L.T.; Zhang, F. Review of new nanocarriers for pesticide formulations. Mater. Rep. 2020, 34, 1099–1103. (In Chinese) [Google Scholar]
- Sun, C.J.; Wang, Y.; Zhao, X.; Cui, B.; Zhang, L.; Zeng, Z.H.; Cui, H.X. Progress on categories and synergistic mechanism of nanopesticides. Chin. J. Pestic. Sci. 2020, 22, 205–213. (In Chinese) [Google Scholar]
- Lu, B.T.; Lv, X.K.; Le, Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jiang, Q.; Peng, M.; Zhou, Z.; Du, X.; Yin, M.; Shen, J.; Yan, S. A Star Polyamine-Based Nanocarrier Delivery System for Enhanced Avermectin Contact and Stomach Toxicity against Green Peach Aphids. Nanomaterials 2022, 12, 1445. [Google Scholar] [CrossRef]
- Yan, S.; Gu, N.; Peng, M.; Jiang, Q.; Liu, E.; Li, Z.; Yin, M.; Shen, J.; Du, X.; Dong, M. A Preparation Method of Nano-Pesticide Improves the Selective Toxicity toward Natural Enemies. Nanomaterials 2022, 12, 2419. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Valizadeh, B.; Panahandeh, S.; Mirhosseini, H.; Zolfaghari, M.; Changbunjong, T. Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency. Nanomaterials 2022, 12, 2971. [Google Scholar] [CrossRef]
- Yin, J.M.; Wang, H.L.; Yang, Z.K.; Wang, J.; Wang, Z.; Duan, L.S.; Li, Z.H.; Tan, W.M. Engineering lignin nanomicroparticles for the antiphotolysis and controlled release of the plant growth regulator abscisic acid. J. Agric. Food Chem. 2020, 68, 7360–7368. [Google Scholar] [CrossRef]
- Yin, J.M.; Quan, M.P.; Wang, Z.; Wang, J.; Yang, Z.K.; Duan, L.S.; Li, Z.H.; Li, Q.X.; Wang, H.L.; Tan, W.M. Cationic modified lignin: Regulation of synthetic microspheres for achieving anti-photolysis and sustained release of the abscisic acid. Ind. Crop. Prod. 2022, 177, 114573. [Google Scholar] [CrossRef]
- Yan, S.; Hu, Q.; Wei, Y.; Jiang, Q.H.; Yin, M.Z.; Dong, M.; Shen, J.; Du, X.G. Calcium nutrition nanoagent rescues tomatoes from mosaic virus disease by accelerating calcium transport and activating antiviral immunity. Front. Plant Sci. 2022, 13, 1092774. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, Y.; Xu, C.; Zhou, Z.; Zhao, P.; Niu, S. Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity. Mater. Sci. Eng. 2019, 102, 134–141. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Fan, T.; Xu, Q.; Wu, Y.; Chen, C.; Huang, Q. Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res. 2013, 20, 1–11. [Google Scholar] [CrossRef]
- Chauhan, N.; Dilbaghi, N.; Gopal, M.; Kumar, R.; Kim, K.H.; Kumar, S. Development of chitosan nanocapsules for the controlled release of hexaconazole. Int. J. Biol. Macromol. 2017, 97, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Hwang, I.C.; Park, J.W.; Park, H.J. Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J. Microencapsul. 2012, 29, 596–604. [Google Scholar] [CrossRef]
- Deng, Y.H.; Zhao, H.J.; Qian, Y.; Lü, L.; Wang, B.B.; Qiu, X.Q. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind. Crop. Prod. 2016, 87, 191–197. [Google Scholar] [CrossRef]
- Hao, L.; Lin, G.Q.; Chen, C.Y.; Zhou, H.J.; Chen, H.Y.; Zhou, X.H. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties. J. Agric. Food Chem. 2019, 67, 9989–9999. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, Y.; Peng, M.; Wang, Z.; Li, T.; Yin, M.; Shen, J.; Yan, S. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: Strikingly enhanced bioactivity and reduced pesticide residue. Environ. Sci. Nano 2022, 9, 988–999. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, K.; Cheng, W.; Li, J.; Liang, X.; Shen, J.; Dou, D.; Yin, M.; Yan, S. Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight. Chem. Eng. J. 2021, 417, 129327. [Google Scholar] [CrossRef]
- Volova, T.G.; Zhila, N.O.; Vinogradova, O.N.; Nikolaeva, E.D.; Kiselev, E.G.; Shumilova, A.A. Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix. J. Environ. Sci. Health 2016, 51, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.D.; Unrine, J.M.; Rao, W.; Wirick, S.; Bertsch, P.M. Bioavailability of gold nanomaterials to plants: Importance of particle sizeand surface coating. Environ. Sci. Technol. 2012, 46, 8467–8474. [Google Scholar] [CrossRef]
- Su, Y.M.; Ashworth, V.; Kim, C.; Adeleye, A.S.; Rolshausen, P.; Roper, C.; White, J.; Jassby, D. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci. Nano 2019, 6, 2311–2331. [Google Scholar] [CrossRef]
- He, B.C.; Chu, Y.; Yin, M.Z.; Müllen, K.; An, C.J.; Shen, J. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv. Mater. 2013, 25, 4580–4584. [Google Scholar] [CrossRef]
- Jiang, L.; Ding, L.; He, B.C.; Shen, J.; Xu, Z.J.; Yin, M.Z.; Zhang, X.L. Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale 2014, 6, 9965–9969. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Yuan, W.L.; Xu, C.L.; Li, F.M.; Cao, L.D.; Huang, Q.L. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers. J. Agric. Food Chem. 2018, 66, 11592–11600. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.H.; Zhan, Y.T.; Chen, S.L.; Xu, Z.Y.; Huang, T.Z.; Hong, X.X.; Zheng, Y.L.; Pan, X.H.; Guan, X. Flowerlike Mg (OH)2 cross-nanosheets for controlling Cry1Ac protein loss: Evaluation of insecticidal activity and biosecurity. J. Agric. Food Chem. 2018, 66, 3651–3657. [Google Scholar] [CrossRef]
- Tong, Y.J.; Shao, L.H.; Li, X.L.; Lu, J.Q.; Sun, H.L.; Xiang, S.; Zhang, Z.H.; Wu, Y.; Wu, X.M. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J. Agric. Food Chem. 2018, 66, 2616–2622. [Google Scholar] [CrossRef]
- Zhao, K.F.; Hu, J.; Ma, Y.; Wu, T.Y.; Gao, Y.X.; Du, F.P. Topology-regulated pesticide retention on plant leaves through concave Janus carriers. ACS Sustain. Chem. Eng. 2019, 7, 13148–13156. [Google Scholar] [CrossRef]
- Huang, B.N.; Chen, F.F.; Shen, Y.; Qian, K.; Wang, Y.; Sun, C.J.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z.H. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 2018, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Cui, H.X.; Wang, Y.; Sun, C.J.; Cui, B.; Zeng, Z.H. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Dong, H.Q.; Liang, Y.; Yang, J.L.; Tang, G.; Zhang, W.B.; Cao, Y.S. Sustainable synthesis of HKUST-1 and its composite by biocompatible ionic liquid for enhancing visible-light photocatalytic performance. J. Clean. Prod. 2019, 208, 353–362. [Google Scholar] [CrossRef]
- Ding, G.L.; Li, D.G.; Liu, Y.; Guo, M.C.; Duan, Y.H.; Li, J.Q.; Cao, Y.S. Preparation and characterization of kasuga-silica-conjugated nanospheres for sustained antimicrobial activity. J. Nanopart. Res. 2014, 16, 1–10. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Abd El-Azeim, M.M.; Sherif, M.A.; Hussien, M.S.; Tantawy, I.A.A.; Bashandy, S.O. Impacts of Nano- and Non-Nanofertilizers on Potato Quality and Productivity. Acta Ecol. Sin. 2020, 40, 388–397. [Google Scholar] [CrossRef]
- Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Omer, A.M. Impact of Engineered Nanomaterials Either Alone or Loaded with NPK on Growth and Productivity of French Bean Plants: Seed Priming vs Foliar Application. S. Afr. J. Bot. 2019, 125, 102–108. [Google Scholar] [CrossRef]
- Bratovcic, A. Different Applications of Nanomaterials and Their Impact on the Environment. Int. J. Mater. Sci. Eng. 2019, 5, 1–7. [Google Scholar]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of Nanoparticles in the Soil-Plant Systems and Their Effects on Human Health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Baranowska-Wojcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Staron, A.; Dlugosz, O.; Pulit-Prociak, J.; Banach, M. Analysis of the Exposure of Organismsto the Action of Nanomaterials. Materials 2020, 13, 349. [Google Scholar] [CrossRef] [Green Version]
- Grillo, R.; Fraceto, L.F.; Amorim, M.J.B.; Scott-Fordsmand, J.J.; Schoonjans, R.; Chaudhry, Q. Ecotoxicological and Regulatory Aspects of Environmental Sustainability of Nanopesticides. J. Hazard. Mater. 2021, 404, 124148. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.L.; Campos, E.V.R.; da Silva, C.M.G.; Pasquoto, T.; Lima, R.; Fraceto, L.F. Solid Lipid Nanoparticles Co-Loaded with Simazine and Atrazine: Preparation, Characterization, and Evaluation of Herbicidal Activity. J. Agric. Food Chem. 2015, 63, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Pereira, A.E.; Nishisaka, C.S.; de Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/Tripolyphosphate Nanoparticles Loaded with Paraquat Herbicide: An Environmentally Safer Alternative for Weed Control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Anjali, C.H.; Sudheer Khan, S.; Margulis-Goshen, K.; Magdassi, S.; Mukherjee, A.; Chandrasekaran, N. Formulation of Water-Dispersible Nanopermethrin for Larvicidal Applications. Ecotoxicol. Environ. Saf. 2010, 73, 1932–1936. [Google Scholar] [CrossRef]
- Saini, P.; Gopal, M.; Kumar, R.; Srivastava, C. Development of Pyridalyl Nanocapsule Suspension for Efficient Management of Tomato Fruit and Shoot Borer (Helicoverpa armigera). J. Environ. Sci. Health B 2014, 49, 344–351. [Google Scholar] [CrossRef]
- Bratovcic, A. Biosynthesis of Green Silver Nanoparticles and Its UV-Vis Characterization. Int. J. Innov. Sci. Eng. Technol. 2020, 7, 170–176. [Google Scholar]
- Ma, Z.Z.; Zhou, H.; Wei, Y.L.; Yan, S.; Shen, J. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Manag. Sci. 2020, 76, 2505–2512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. https://doi.org/10.3390/nano13071255
Yin J, Su X, Yan S, Shen J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials. 2023; 13(7):1255. https://doi.org/10.3390/nano13071255
Chicago/Turabian StyleYin, Jiaming, Xiaofeng Su, Shuo Yan, and Jie Shen. 2023. "Multifunctional Nanoparticles and Nanopesticides in Agricultural Application" Nanomaterials 13, no. 7: 1255. https://doi.org/10.3390/nano13071255
APA StyleYin, J., Su, X., Yan, S., & Shen, J. (2023). Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials, 13(7), 1255. https://doi.org/10.3390/nano13071255