One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of Gold Nanostars
2.3. Synthesis of Gold Nanoantennas
2.4. Synthesis of Gold Nanoshells
2.5. Synthesis of Gold Nanorods
2.6. Stabilization of Gold Nanoparticles
2.7. Formation of Silica Shell on Gold Nanorods
2.8. Scheme of PM Experiments on Irradiation in a Capillary
2.9. Fluence Calculation
2.10. Variation of the Colloid Flow Rate
2.11. Extinction and TEM Measurements
3. Results and Discussion
3.1. Gold Nanoparticles
3.2. Silica-Coated Gold Nanorods
3.3. Effects of Flow Rate
3.4. Effects of Nanoparticle Shape and Structure
3.5. Effect of the Silica Shell on the Photostability of Nanorods
3.6. Quantification of PM Factor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Lou-Franco, J.; Das, B.; Elliott, C.; Cao, C. Gold nanozymes: From concept to biomedical applications. Nano-Micro Lett. 2021, 13, 10. [Google Scholar] [CrossRef]
- Shi, L.; Sordillo, L.A.; Rodriguez-Contreras, A.; Alfano, R. Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 2016, 9, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Khlebtsov, N.G.; Dykman, L.A.; Khlebtsov, B.N. Synthesis and plasmonic tuning of gold and gold–silver nanoparticles. Russ. Chem. Rev. 2022, 91, RCR5058. [Google Scholar] [CrossRef]
- Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2020, 2, 3764. [Google Scholar] [CrossRef]
- Pohanka, M. Current biomedical and diagnostic applications of gold micro and nanoparticles. Mini-Rev. Med. Chem. 2021, 21, 1085–1095. [Google Scholar] [CrossRef]
- Fales, A.M.; Vogt, W.C.; Wear, K.A.; Ilev, I.K.; Pfefer, T.J. Pulsed laser damage of gold nanorods in turbid media and its impact on multi-spectral photoacoustic imaging. Biomed. Opt. Express. 2019, 10, 1919–1934. [Google Scholar] [CrossRef]
- González-Rubio, G.; Guerrero-Martínez, A.; Liz-Marzán, L.M. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res. 2016, 49, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, G.; Olshin, P.K.; Yan, C.; Voss, J.M.; Drabbels, M.; Lorenz, U.J. The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation. Nanoscale Adv. 2021, 3, 5277–5283. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Wang, Y.; Wilson, B.A.; Liu, Y.; Dawkrajai, N.; Randrianalisoa, J.; Qin, Z. Nanoparticle fragmentation below the melting point under single picosecond laser pulse stimulation. J. Phys. Chem. C 2021, 125, 26718–26730. [Google Scholar] [CrossRef] [PubMed]
- Pustovalov, V.K.; Chumakov, A.N. Laser melting and evaporation of nanoparticles: A simplified model for estimations of threshold fluence. Opt. Laser Tech. 2020, 126, 106082. [Google Scholar] [CrossRef]
- Fales, A.M.; Vogt, W.C.; Pfefer, T.J.; Ilev, I.K. Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles. Sci. Rep. 2017, 7, 15704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C.R.C. The shape transition of gold nanorods. Langmuir 1999, 15, 701–709. [Google Scholar] [CrossRef]
- Mansour, Y.; Battie, Y.; En Naciri, A.; Chaoui, N. Mechanisms and advanced photothermal modelling of laser-induced shape transformations of colloidal gold nanorods by nanosecond laser pulses. Nanoscale 2019, 11, 11679–11686. [Google Scholar] [CrossRef] [PubMed]
- Fales, A.M.; Vogt, W.C.; Wear, K.A.; Pfefer, T.J.; Ilev, I.K. Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses. J. Biomed. Opt. 2019, 24, 065003. [Google Scholar] [CrossRef] [PubMed]
- Khanadeev, V.A.; Kushneruk, S.A.; Simonenko, A.V.; Akchurin, G.G.; Akchurin, G.G.; Tuchin, V.V.; Khlebtsov, N.G. Nanosecond laser-induced photomodification of gold nanostars of various sizes. Proc. SPIE. 2020, 11458, n1145809-1. [Google Scholar] [CrossRef]
- Link, S.; Burda, C.; Mohamed, M.B.; Nikoobakht, B.; El-Sayed, M.A. Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence. J. Phys. Chem. A 1999, 103, 1165–1170. [Google Scholar] [CrossRef]
- Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M.A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 2000, 104, 6152–6163. [Google Scholar] [CrossRef]
- Peng, Z.; Walther, T.; Kleinermanns, K. Photofragmentation of phase-transferred gold nanoparticles by intense pulsed laser light. J. Phys. Chem. B 2005, 109, 15735–15740. [Google Scholar] [CrossRef]
- Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. Femtosecond laser-induced size reduction of aqueous gold nanoparticles: In situ and pump−probe spectroscopy investigations revealing Coulomb explosion. J. Phys. Chem. C 2011, 115, 8503–8512. [Google Scholar] [CrossRef]
- Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Bimodal size distribution of gold nanoparticles under picosecond laser pulses. J. Phys. Chem. B 2005, 109, 9404–9410. [Google Scholar] [CrossRef] [PubMed]
- Pyatenko, A.; Wang, H.; Koshizaki, N.; Tsuji, T. Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photonics Rev. 2013, 7, 596–604. [Google Scholar] [CrossRef]
- Aguirre, C.M.; Moran, C.E.; Young, J.F.; Halas, N.J. Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination. J. Phys. Chem. B 2004, 108, 7040–7045. [Google Scholar] [CrossRef]
- Fales, A.M.; Vogt, W.C.; Wear, K.A.; Pfefer, J.; Ilev, I.K. Size-dependent thresholds for melting and nanobubble generation using pulsed-laser irradiated gold nanoparticles. In Proceedings of the SPIE 10509, Plasmonics in Biology and Medicine XV, San Francisco, CA, USA, 8 June 2018; p. 105090C. [Google Scholar] [CrossRef]
- Akchurin, G.; Khlebtsov, B.; Akchurin, G.; Tuchin, V.; Zharov, V.; Khlebtsov, N. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 2008, 19, 015701. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.; Barcikowski, S. Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids. Appl. Surf. Sci. 2015, 348, 22–29. [Google Scholar] [CrossRef]
- Zerebecki, S.; Reichenberger, S.; Barcikowski, S. Continuous-flow flat jet setup for uniform pulsed laser postprocessing of colloids. J. Phys. Chem. A 2020, 124, 11125–11132. [Google Scholar] [CrossRef]
- Plech, A.; Ibrahimkutty, S.; Reich, S.; Newby, G. Thermal dynamics of pulsed-laser excited gold nanorods in suspension. Nanoscale 2017, 9, 17284–17292. [Google Scholar] [CrossRef]
- Hashimoto, S.; Uwada, T.; Hagiri, M.; Shiraishi, R. Mechanistic aspect of surface modification on glass substrates assisted by single shot pulsed laser-induced fragmentation of gold nanoparticles. J. Phys. Chem. C 2011, 115, 4986–4993. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Koshizaki, N.; Sakaki, S. Spherical particle formation mechanism in pulsed laser melting in liquid under controlled-pulse-number irradiation using a slit nozzle flow system. J. Phys. Chem. C 2019, 123, 24934–24942. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Koshizaki, N.; Sakaki, S. Pulsed laser melting in liquid for crystalline spherical submicrometer particle fabrication–Mechanism, process control, and applications. Prog. Mater. Sci. 2023, 131, 101004. [Google Scholar] [CrossRef]
- Ziefuss, A.R.; Reich, S.; Reichenberger, S.; Levantino, M.; Plech, A. In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres. Phys. Chem. Chem. Phys. 2020, 22, 4993. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Khoury, C.G.; Hwang, H.; Wilson, C.M.; Grant, G.A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Khlebtsov, N. Improved size-tunable synthesis and SERS properties of Au nanostars. J. Nanopart. Res. 2014, 16, 2623. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Pallavicini, P.; Dona, A.; Casu, A.; Chirico, G.; Collini, M.; Dacarro, G.; Falqui, A.; Milanese, C.; Sironic, L.; Tagliettia, A. Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem. Commun. 2013, 49, 6265–6267. [Google Scholar] [CrossRef] [Green Version]
- Atta, S.; Beetz, M.; Fabris, L. Understanding the role of AgNO3 concentration and seed morphology to achieve tunable shape control in gold nanostars. Nanoscale 2019, 11, 2946–2958. [Google Scholar] [CrossRef]
- Tsoulos, T.V.; Atta, S.; Lagos, M.J.; Beetz, M.; Batson, P.E.; Tsilomelekis, G.; Fabris, L. Colloidal plasmonic nanostar antennas with wide range resonance tenability. Nanoscale 2019, 11, 18662–18671. [Google Scholar] [CrossRef]
- Khanadeev, V.A.; Khlebtsov, B.N.; Khlebtsov, N.G. Optical properties of gold nanoshells on monodisperse silica cores: Experiment and simulations. J. Quant. Spectr. Radiat. Trans. 2017, 187, 1–9. [Google Scholar] [CrossRef]
- Khanadeev, V.A.; Khlebtsov, B.N.; Klimova, S.A.; Tsvetkov, M.Y.; Bagratashvili, V.N.; Sukhorukov, G.B.; Khlebtsov, N.G. Large-scale high-quality 2D silica crystals: Dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis. Nanotechnology 2014, 25, 405602. [Google Scholar] [CrossRef]
- Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008, 24, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Duff, D.G.; Baiker, A.; Edwards, P.P. A new hydrosol of gold clusters. J. Chem. Soc. Chem. Commun. 1993, 1, 96–98. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C.B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N.; et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Khlebtsov, B.N.; Kryuchkova, E.V.; Zarkov, S.V.; Burov, A.M. Universal determination of gold concentration in colloids with UV-vis spectroscopy. J. Phys. Chem. C 2022, 126, 19268–19276. [Google Scholar] [CrossRef]
- Cavigli, L.; Khlebtsov, B.N.; Centi, S.; Khlebtsov, N.G.; Pini, R.; Ratto, F. Photostability of contrast agents for photoacoustics: The case of gold nanorods. Nanomaterials 2021, 11, 116. [Google Scholar] [CrossRef]
Sample | Fluence at the Initial PM (mJ/cm2) | Fluence for Complete PM (mJ/cm2) |
---|---|---|
AuNAs | 13 | 520 |
AuNRs | 13 | 2080 |
AuNSH | 65 | 520 |
AuNST | 130 | 1040 |
AuNR@SiO2-24 nm | 65 | 4800 |
AuNR@SiO2-30 nm | 65 | 4800 |
AuNR@SiO2-57 nm | 65 | 5430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanadeev, V.A.; Simonenko, A.V.; Grishin, O.V.; Khlebtsov, N.G. One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies. Nanomaterials 2023, 13, 1312. https://doi.org/10.3390/nano13081312
Khanadeev VA, Simonenko AV, Grishin OV, Khlebtsov NG. One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies. Nanomaterials. 2023; 13(8):1312. https://doi.org/10.3390/nano13081312
Chicago/Turabian StyleKhanadeev, Vitaly A., Andrey V. Simonenko, Oleg V. Grishin, and Nikolai G. Khlebtsov. 2023. "One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies" Nanomaterials 13, no. 8: 1312. https://doi.org/10.3390/nano13081312
APA StyleKhanadeev, V. A., Simonenko, A. V., Grishin, O. V., & Khlebtsov, N. G. (2023). One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies. Nanomaterials, 13(8), 1312. https://doi.org/10.3390/nano13081312