Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers
Abstract
:1. Introduction
2. Theoretical Details
2.1. Device Architecture
2.2. Simulation Parameters
3. Results and Discussion
3.1. Simulation of CdTe Base Solar Cell
3.2. Effect of Thickness on the CdTe Absorber Layer
3.3. Effect of Thickness on the CdS Buffer Layer
3.4. Effect of Work Function in Back Contact
3.5. Effect of Defect Density (cm−3)
3.6. Effect of Rs and Rsh on the CdTe Solar Cell Performance
3.7. Effect of Carrier Concentration
3.8. Enhancement of the CdTe Solar Cell Performance by Incorporating ZnO:Al and CuSCN Nanolayers
3.8.1. Effect of Rs in CdTe Devices with Different Configurations
3.8.2. Optimization of the CdTe Solar Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brian, E.; McCandless, J.R. Cadmium Telluride Solar Cells. In Handbook of Photovoltaic Science and Engineering; Hegedus, S., Luque, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 600–641. [Google Scholar]
- Huang, C.-H.; Chuang, W.J. Dependence of performance parameters of CdTe solar cells on semiconductor properties studied by using SCAPS-1D. Vacuum 2015, 118, 32–37. [Google Scholar] [CrossRef]
- Niemegeers, A.; Burgelman, M. Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. J. Appl. Phys. 1997, 81, 2881–2886. [Google Scholar] [CrossRef]
- Metzger, W.K.; Grover, S.; Lu, D.; Colegrove, L.; Moseley, J.; Perkins, C.L.; Li, X.; Mallick, R.; Zhang, W.; Malik, R.; et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 2019, 4, 837–845. [Google Scholar] [CrossRef]
- Hu, A.; Zhou, J.; Qin, X.; Jiang, Y.; Zhou, P.; Zhong, P.; Tang, S.; Wu, X.; Yang, D. Improving CdTe-Based Thin-Film Solar Cell Efficiency with the Oxygenated CdSe Layer Prepared by Sputtering Process. Phys. Status Solidi A 2020, 217, 2000560. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Feng, X. Numerical simulation of ultra-thin CdTe solar cells with a buffer layer of MoOx in the backwall configuration. Chin. J. Phys. 2018, 56, 1826–1833. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Yang, K.; He, S.; Lu, H.; Li, B.; Zeng, G.; Zhang, J.; Li, W.; Wu, L.; et al. Preparation and characterization of pulsed laser deposited Sb2Te3 back contact for CdTe thin film solar cell. Appl. Surf. Sci. 2018, 453, 126–131. [Google Scholar] [CrossRef]
- Demtsu, S.; Sites, J. Effect of back-contact barrier on thin-film CdTe solar cells. Thin Solid Film. 2006, 510, 320–324. [Google Scholar] [CrossRef]
- Yang, R.; Wang, D.; Jeng, M.; Ho, K.; Wang, D. Stable CdTe thin film solar cells with a MoOx back-contact buffer layer. Prog. Photovolt. Res. Appl. 2016, 24, 59–65. [Google Scholar] [CrossRef]
- Paudel, N.R.; Xiao, C.; Yan, Y. CdS/CdTe thin-film solar cells with Cu-free transition metal oxide/Au back contacts. Prog. Photovolt. Res. Appl. 2015, 23, 437–442. [Google Scholar] [CrossRef]
- Shen, K.; Yang, R.; Wang, D.; Jeng, M.; Chaudhary, S.; Ho, K.; Wang, D. Stable CdTe solar cell with V2O5 as a back contact buffer layer. Sol. Energy Mater. Sol. Cells 2016, 144, 500–508.11. [Google Scholar] [CrossRef]
- Xiao, D.; Li, X.; Wang, D.; Li, Q.; Shen, K.; Wang, D. CdTe thin film solar cell with NiO as a back contact buffer layer. Sol. Energy Mater. Sol. Cells 2017, 169, 61–67. [Google Scholar] [CrossRef]
- Lin, H.; Xia, W.; Wu, H.N.; Gao, Y.; Tang, C.W. MoOxback contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability. Sol. Energy Mater. Sol. Cells 2012, 99, 349–355. [Google Scholar] [CrossRef]
- Larramona, G.; Choné, C.; Jacob, A.; Sakakura, D.; Delatouche, B.; Péré, D.; Cieren, X.; Nagino, M.; Bayón, R. Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating and copper thiocyanate showing high quantum efficiency. Chem. Mater. 2006, 18, 1688–1696. [Google Scholar] [CrossRef]
- Hsiao, K.J.; Sites, J.R. Electron reflector to enhance photovoltaic efficiency: Application to thin-film CdTe solar cells. Prog. Photovolt. Res. Appl. 2012, 20, 486–489. [Google Scholar] [CrossRef]
- Aldakov, D.; Chappaz-Gillot, C.; Salazar, R.; Delaye, V.; Welsby, K.A.; Ivanova, V.; Dunstan, P.R. Properties of electrodeposited CuSCN 2D layers and nanowires influenced by their mixed domain structure. J. Phys. Chem. C 2014, 118, 16095–16103. [Google Scholar] [CrossRef] [Green Version]
- Pattanasattayavong, P.; Yaacobi-Gross, N.; Zhao, K.; Ndjawa, G.O.N.; Li, J.; Yan, F.; O’Regan, B.C.; Amassian, A.; Anthopoulos, T.D. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Adv. Mater. 2013, 25, 1504–1509. [Google Scholar] [CrossRef]
- Way, A.; Luke, J.; Evans, A.D.; Li, Z.; Kim, J.-S.; Durrant, J.R.; Lee, H.K.H.; Tsoi, W.C. Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Adv. 2019, 9, 085220. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-Y.; Ho, W.-J.; Feng, S.-K.; Liu, J.-J.; Chuang, T.-W.; Li, G.-Y.; Yang, Y.-C.; Chiang, C.-C.; Chen, Y.H.; Ghosh, S.; et al. Electrical and optical performance of silicon solar cells using plasmonics indium nanoparticles layer embedded in SiO2 antireflective coating. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference, Washington, DC, USA, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2664–2666. [Google Scholar]
- Agrawal, S.; Rane, R.; Mukherjee, S. ZnO thin film deposition for TCO application in solar cell. Conf. Pap. Energy 2013, 2013, 718692. [Google Scholar] [CrossRef] [Green Version]
- Rao, T.P.; Kumar, M.S.; Angayarkanni, S.A.; Ashok, M. Effect of stress on the optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J. Alloys Compd. 2009, 485, 413–417. [Google Scholar] [CrossRef]
- Muchuweni, E.; Sathiaraj, T.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 2017, 3, e00285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatavu, S.; Rotaru, C.; Fedorov, V.; Stein, T.A.; Caraman, M.; Evtodiev, I.; Kelch, C.; Kirsch, M.; Chetruş, P.; Gaşin, P.; et al. A comparative study of (ZnO, In2O3: SnO2, SnO2)/CdS/CdTe/(Cu/) Ni heterojunctions. Thin Solid Film. 2013, 535, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Peña, J.L.; Rejón, V.; Arés, O.; Camacho, J.M.; Rios-Flores, A. The ZnO-reflectance effect on the heterojunction ITO/ZnO/CdS/CdTe. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 002021–002023. [Google Scholar]
- Calceido, L.M.; Moreno, L.C.; Sandino, J.W.; Gordillo, G. Deposition, optical and structural characterization of SnO2:F/CdS and ZnO/CdS structures used as optical windows in solar cells. Surf. Rev. Lett. 2002, 9, 1693–1696. [Google Scholar]
- Olson, M.; Friedman, D.J.; Kurtz, S. High-Efficiency III-V Multijunction Solar Cells. In Handbook of Photovoltaic Science and Engineering; Luque, A., Hegedus, S., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2003; pp. 359–411. [Google Scholar]
- Suhir, E. Thin Films and Epitaxy. In Handbook of Crystal Growth, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 983–1005. [Google Scholar]
- Asl, H.Z.; Rozati, S.M. High-quality spray-deposited fluorine-doped tin oxide: Effect of film thickness on structural, morphological, electrical, and optical properties. Appl. Phys. A 2019, 125, 689. [Google Scholar] [CrossRef]
- Montoya De Los Santos, I.; Cortina-Marrero, H.J.; Ruíz-Sánchez, M.A.; Hechavarría-Difur, L.; Sánchez-Rodríguez, F.J.; Courel, M.; Hu, H. Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study. Sol. Energy 2020, 199, 198–205. [Google Scholar] [CrossRef]
- Montoya De Los Santos, I.; Cortina-Marrero, H.J.; Hechavarriía-Difur, L.; Sánchez-Rodríguez, F.J.; Meza-Avendaño, C.A.; Borrego-Pérez, J.A.; Moreno-Oliva, V.I.; Román-Hernández, E.; Courel, M. The effect of Se/(S+ Se) compositional ratios on the performance of SnS-based solar cell: A numerical simulation. Semicond. Sci. Technol. 2020, 35, 115010. [Google Scholar] [CrossRef]
- Wick, C.; Dang, L. Recent advances in understanding transfer ions across aqueous interfaces. Chem. Phys. Lett. 2008, 458, 170–174. [Google Scholar] [CrossRef]
- Medeiros, P.V.; Gueorguiev, G.K.; Stafström, S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au (1 1 1) and Cu (1 1 1). Carbon 2015, 81, 620–628. [Google Scholar] [CrossRef]
- Gloeckler, M.; Fahrenbruch, A.L.; Sites, J.R. Numerical modeling of CIGS and CdTe solar cells: Setting the baseline. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 491–494. [Google Scholar]
- Neamen, D.A. Solar cells. In Semiconductor Physics and Devices: Basic Principles; Neamen, D.A., Ed.; McGraw-Hill: New York, NY, USA, 2003; pp. 624–632. [Google Scholar]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Abdelkader, A.F.I. Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non–Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software. Crystals 2021, 11, 1454. [Google Scholar] [CrossRef]
- Zandi, S.; Razaghi, M. Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification. Sol. Energy 2019, 179, 298–306. [Google Scholar] [CrossRef]
- Pinzón, C.; Martínez, N.; Casas, G.; Alvira, F.; Cappelletti, M. Evaluación teórica del comportamiento de celdas solares de perovskita invertida totalmente inorgánicas. Av. Energías Renov. Medio Ambiente AVERMA 2020, 24, 139–148. [Google Scholar]
- Casas, G.A.; Cappelletti, M.A.; Cédola, A.P.; Soucase, B.M.; Peltzer, E.L. Impacto del uso de diversos materiales como capa de transporte de huecos en una celda solar de Perovskita. Av. Energías Renov. Medio Ambiente AVERMA 2021, 20, 113–123. [Google Scholar]
- Ahmmed, S.; Aktar, A.; Rahman, F.; Hossain, J.; Ismail, A.B. A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik 2020, 223, 165625. [Google Scholar] [CrossRef]
- Seck, S.M.; Ndiaye, E.N.; Fall, M.; Charvet, S. Study of Efficiencies CdTe/CdS Photovoltaic Solar Cell According to Electrical Properties by Scaps Simulation. Nat. Resour. 2020, 11, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Morales-Acevedo, A. Thin film CdS/CdTe solar cells: Research perspectives. Sol. Energy 2006, 80, 675–681. [Google Scholar] [CrossRef]
- Ščajev, P.; Miasojedovas, S.; Mekys, A.; Kuciauskas, D.; Lynn, K.G.; Swain, S.K.; Jarašiūnas, K. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques. J. Appl. Phys. 2018, 123, 025704. [Google Scholar] [CrossRef]
- Wight, D.; Bradley, D.; Williams, G.; Astles, M.; Irvine, S.; Jones, C. Minority carrier diffusion length in CdTe. J. Cryst. Growth 1982, 59, 323–331. [Google Scholar] [CrossRef]
- Rached, D.; Mostefaoui, R. Influence of the front contact barrier height on the Indium Tin Oxide/hydrogenated p-doped amorphous silicon heterojunction solar cells. Thin Solid Film. 2008, 516, 5087–5092. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Teyou Ngoupo, A.; Ouédraogo, S.; Ndjaka, J.M. Numerical analysis of interface properties effects in CdTe/CdS:O thin film solar cell by SCAPS-1D. Indian J. Phys. 2019, 93, 869–881. [Google Scholar] [CrossRef]
- Dhass, A.D.; Natarajan, E.; Ponnusamy, L. Influence of shunt resistance on the performance of solar photovoltaic cell. In Proceedings of the 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), Chennai, India, 13–15 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 382–386. [Google Scholar]
- Wolf, M.; Rauschenbach, H. Series resistance effects on solar cell measurements. Adv. Energy Convers. 1963, 3, 455–479. [Google Scholar] [CrossRef]
- Handy, R. Theoretical analysis of the series resistance of a solar cell. Solid-State Electron. 1967, 10, 765–775. [Google Scholar] [CrossRef]
- Haitjema, H.; Elich, J.; Hoogendoorn, C. The optical, electrical and structural properties of fluorine-doped, pyrolytically sprayed tindioxide coatings. Sol. Energy Mater. 1989, 18, 283–297. [Google Scholar] [CrossRef]
- Demtsu, S.H.; Albin, D.S.; Pankow, J.W.; Davies, A. Stability study of CdS/CdTe solar cells made with Ag and Ni back-contacts. Sol. Energy Mater. Sol. Cells 2006, 90, 2934–2943. [Google Scholar] [CrossRef]
- Paudel, N.R.; Yan, Y. Application of copper thiocyanate for high open-circuit voltages of CdTe solar cells. Prog. Photovolt. Res. Appl. 2016, 24, 94–101. [Google Scholar] [CrossRef]
- Montgomery, A.; Guo, L.; Grice, C.; Awni, R.A.; Saurav, S.; Li, L.; Yan, Y.; Yan, F. Solution-processed copper (I) thiocyanate (CuSCN) for highly efficient CdSe/CdTe thin-film solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 665–672. [Google Scholar] [CrossRef]
- Gretener, C.; Perrenoud, J.; Kranz, L.; Cheah, E.; Dietrich, M.; Buecheler, S.; Tiwari, A.N. New perspective on the performance stability of CdTe solar cells degradation of CdTe solar cell performance. Sol. Energy Mater. Sol. Cells 2016, 146, 51–57. [Google Scholar] [CrossRef]
- Chopra, K.L.; Paulson, P.D.; Dutta, V. Thin-film solar cells: An overview. Prog. Photovolt. Res. Appl. 2004, 12, 69–92. [Google Scholar] [CrossRef]
- Romeo, A. Thin film technologies—CdTe solar cells. In McEvoy’s Handbook of Photovoltaics, 3rd ed.; Kalogirou, S., Ed.; Elsevier: Edinburgh, UK, 2018; pp. 309–369. [Google Scholar]
- Perrenoud, J.; Kranz, L.; Gretener, C.; Pianezzi, F.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N. A comprehensive picture of Cu doping in CdTe solar cells. J. Appl. Phys. 2013, 114, 174505. [Google Scholar] [CrossRef] [Green Version]
- Burst, J.M.; Duenow, J.N.; Albin, D.S.; Colegrove, E.; Reese, M.O.; Aguiar, J.A.; Jiang, C.S.; Patel, M.K.; Al-Jassim, M.M.; Kuciauskas, D.; et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 2016, 1, 16015. [Google Scholar] [CrossRef]
- First Solar. First Solar Achieves Yet Another Cell Conversion Efficiency World Record; First Solar Press: Tempe, AZ, USA, 2016. [Google Scholar]
Properties | CuSCN | CdTe | CdS | ZnO:Al | SnO2:F |
---|---|---|---|---|---|
0.030 | 4.0 | 0.025 | 0.5 | 0.5 | |
( | 3.4 | 1.45 | 2.4 | 3.3 | 3.6 |
( | 1.9 | 3.9 | 4.0 | 4.0 | 4.0 |
10 | 9.4 | 10 | 9.0 | 9.0 | |
() | 1.7 × 1019 | 8 × 1017 | 2.2 × 1018 | 1 × 1019 | 2.2 × 1018 |
() | 2.5 × 1021 | 1.8 × 1019 | 1.8 × 1019 | 1 × 1019 | 1.8 × 1019 |
( | 1 × 10−4 | 3.2 × 102 | 1.0 × 102 | 5 | 1.0 × 102 |
( | 1 × 10−1 | 4 | 2.5 | 5 | 2.5 |
- | - | 1.1 × 1018 | 5 × 1017 | 1.1 × 1017 | |
1 × 1018 | 2 × 1014 | - | - | - | |
1 × 1014 | 2 × 1014 | 1 × 1018 | 1 × 1015 | 1 × 1015 | |
Defect type | Single donor | Single donor | Single acceptor | Single acceptor | Single acceptor |
CdS/CdTe Interface | Values |
---|---|
Defect type | acceptor |
Capture cross-section for electrons (cm2) | 1 × 10−13 |
Capture cross-section for holes (cm2) | 1 × 10−13 |
Energetic distribution | Single |
Reference for defect energy level Et | Above Ev of CdTe |
Energy concerning reference (eV) | 0.100 |
Total density (integrated over all energies) (1 cm2) at CdS/CdTe interface | 1.6 × 1012 |
Output Parameters | 500 nm | 1000 nm | 1500 nm | 2000 nm | 2500 nm | 3000 nm | 3500 nm | 4000 nm | 4500 nm | 5000 nm |
---|---|---|---|---|---|---|---|---|---|---|
Voc (V) | 0.69 | 0.73 | 0.79 | 0.83 | 0.85 | 0.85 | 0.86 | 0.87 | 0.87 | 0.87 |
Jsc (mA/cm2) | 20.92 | 23.04 | 23.63 | 23.89 | 24.03 | 24.11 | 24.15 | 24.18 | 24.19 | 24.20 |
FF (%) | 81.57 | 81.23 | 79.37 | 78.94 | 78.53 | 77.82 | 77.01 | 76.14 | 75.29 | 74.45 |
PCE (%) | 11.83 | 13.78 | 14.95 | 15.73 | 16.05 | 16.13 | 16.11 | 16.04 | 15.93 | 15.80 |
Output Parameters | 50 nm | 15 nm | 20 nm | 25 nm | 30 nm | 35 nm | 40 nm | 45 nm | 50 nm |
---|---|---|---|---|---|---|---|---|---|
Voc (V) | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.86 | 0.86 |
Jsc (mA/cm2) | 24.89 | 24.63 | 24.40 | 24.18 | 23.97 | 23.77 | 23.58 | 23.40 | 23.22 |
FF (%) | 76.18 | 76.17 | 76.15 | 76.14 | 76.13 | 76.12 | 76.11 | 76.10 | 76.09 |
PCE (%) | 16.53 | 16.35 | 16.19 | 16.04 | 15.89 | 15.75 | 15.62 | 15.49 | 15.37 |
Output Parameters | CdTe/CdS/SnO2:F | CdTe/CdS/ZnO:Al | CuSCN/CdTe/CdS/ZnO:Al |
---|---|---|---|
Voc (V) | 0.87 | 0.87 | 0.94 |
Jsc (mA/cm2) | 24.18 | 25.5 | 24.91 |
FF (%) | 76.14 | 76.19 | 75.67 |
PCE (%) | 16.04 | 16.90 | 17.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya De Los Santos, I.; Pérez-Orozco, A.A.; Liña-Martínez, D.A.; Courel, M.; Meza-Avendaño, C.A.; Borrego-Pérez, J.A.; Pérez, L.M.; Laroze, D. Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers. Nanomaterials 2023, 13, 1335. https://doi.org/10.3390/nano13081335
Montoya De Los Santos I, Pérez-Orozco AA, Liña-Martínez DA, Courel M, Meza-Avendaño CA, Borrego-Pérez JA, Pérez LM, Laroze D. Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers. Nanomaterials. 2023; 13(8):1335. https://doi.org/10.3390/nano13081335
Chicago/Turabian StyleMontoya De Los Santos, Isaac, Alan A. Pérez-Orozco, Diego A. Liña-Martínez, Maykel Courel, Carlos A. Meza-Avendaño, Jorge A. Borrego-Pérez, Laura M. Pérez, and David Laroze. 2023. "Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers" Nanomaterials 13, no. 8: 1335. https://doi.org/10.3390/nano13081335
APA StyleMontoya De Los Santos, I., Pérez-Orozco, A. A., Liña-Martínez, D. A., Courel, M., Meza-Avendaño, C. A., Borrego-Pérez, J. A., Pérez, L. M., & Laroze, D. (2023). Towards a CdTe Solar Cell Efficiency Promotion: The Role of ZnO:Al and CuSCN Nanolayers. Nanomaterials, 13(8), 1335. https://doi.org/10.3390/nano13081335