Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates
Abstract
:1. Introduction
- p is the pressure;
- is the identity tensor;
- is a frame indifferent response function;
- are the first N Rivlin–Ericksen tensors:
- is the velocity field;
- denotes the velocity gradient;
- denotes the transpose of the velocity gradient;
- the differential operator is the material time derivative,
- ;
- is the shear stress relaxation time, ;
- is the relaxation viscosity coefficient, .
2. Statements of Boundary Value Problems
- is the fluid density, ;
- is the velocity vector;
- is the Cauchy stress tensor;
- is the external force per unit mass;
- is the temperature;
- is the thermal conductivity, ;
- is the heat source intensity;
- is the Rayleigh function that determines the fluid energy dissipation (mechanical-to-thermal energy conversion) according to the formula
- the colon symbol: denotes the scalar product of tensors;
- is the heat capacity of the fluid, ;
- the operators div and ∇ are the divergence and the gradient, respectively, with respect to the space variables x, y, z;
- .
- is the exterior unit normal vector on the channel walls;
- denotes the tangential component of ;
- k is the slip coefficient, ;
- is the threshold value of the tangential stresses, .
3. Analysis and Exact Solution of Problem 1
4. Analysis and Exact Solution of Problem 2
5. Analysis and Exact Solution of Problem 3
6. Analysis and Exact Solution of Problem 4
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivlin, R.S.; Ericksen, J.L. Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 1955, 4, 323–425. [Google Scholar] [CrossRef]
- Cioranescu, D.; Girault, V.; Rajagopal, K.R. Mechanics and Mathematics of Fluids of the Differential Type; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Waqas, M.; Thaljaoui, A.; Zubair, M.; Riahi, A.; Chu, Y.M.; Khan, W.A. Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation. Soft Comput. 2022, 26, 1033–1042. [Google Scholar] [CrossRef]
- Imran, M.; Yasmin, S.; Waqas, H.; Khan, S.A.; Muhammad, T.; Alshammari, N.; Hamadneh, N.N.; Khan, I. Computational analysis of nanoparticle shapes on hybrid nanofluid flow due to flat horizontal plate via solar collector. Nanomaterials 2022, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Hayat, T.; Momani, S. Non-similar analysis of the Cattaneo–Christov model in MHD second-grade nanofluid flow with Soret and Dufour effects. Alex. Eng. J. 2023, 70, 25–35. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Mardani, M.R.; Paikar, M.; Hasibi, A.; Tavangar, T.; Nimafar, M.; Ganji, D.D.; Shafii, M.B. Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results Eng. 2023, 17, 100838. [Google Scholar] [CrossRef]
- Toms, B.A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proc. First Int. Congr. Rheol. 1948, 2, 135–141. [Google Scholar]
- Barenblatt, G.I.; Kalashnikov, V.N. Effect of high-molecular formations on turbulence in dilute polymer solutions. Fluid Dyn. 1968, 3, 45–48. [Google Scholar] [CrossRef]
- Pisolkar, V.G. Effect of drag reducing additives on pressure loss across transitions. Nature 1970, 225, 936–937. [Google Scholar] [CrossRef]
- Amfilokhiev, V.B.; Pavlovskii, V.A.; Mazaeva, N.P.; Khodorkovskii, Y.S. Flows of polymer solutions in the presence of convective accelerations. Trudy Leningrad. Korablestr. Inst. 1975, 96, 3–9. [Google Scholar]
- Amfilokhiev, V.B.; Pavlovskii, V.A. Experimental data on laminar-turbulent transition for flows of polymer solutions in pipes. Trudy Leningrad. Korablestr. Inst. 1976, 104, 3–5. [Google Scholar]
- Fu, Z.; Otsuki, T.; Motozawa, M.; Kurosawa, T.; Yu, B.; Kawaguchi, Y. Experimental investigation of polymer diffusion in the drag-reduced turbulent channel flow of inhomogeneous solution. Int. J. Heat Mass Transf. 2014, 77, 860–873. [Google Scholar] [CrossRef]
- Han, W.J.; Dong, Y.Z.; Choi, H.J. Applications of water-soluble polymers in turbulent drag reduction. Processes 2017, 5, 24. [Google Scholar] [CrossRef]
- Pukhnachev, V.V.; Frolovskaya, O.A. On the Voitkunskii–Amfilokhiev–Pavlovskii model of motion of aqueous polymer solutions. Proc. Steklov Inst. Math. 2018, 300, 168–181. [Google Scholar] [CrossRef]
- Frolovskaya, O.A.; Pukhnachev, V.V. The problem of filling a spherical cavity in an aqueous solution of polymers. Polymers 2022, 14, 4259. [Google Scholar] [CrossRef] [PubMed]
- Voitkunskii, Y.I.; Amfilokhiev, V.B.; Pavlovskii, V.A. Equations of motion of a fluid, with its relaxation properties taken into account. Trudy Leningrad. Korablestr. Inst. 1970, 69, 19–26. [Google Scholar]
- Lokshin, A.A. Tauberian Theory of Wave Fronts in Linear Hereditary Elasticity; Springer: Singapore, 2020; ISBN 978-981-15-8577-7. [Google Scholar]
- Pavlovskii, V.A. On the theoretical description of weak water solutions of polymers. Dokl. Akad. Nauk. 1971, 200, 809–812. [Google Scholar]
- Baranovskii, E.S. Flows of a polymer fluid in domain with impermeable boundaries. Comput. Math. Math. Phys. 2014, 54, 1589–1596. [Google Scholar] [CrossRef]
- Dunn, J.E.; Fosdick, R.L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 1974, 56, 191–252. [Google Scholar] [CrossRef]
- Fosdick, R.L.; Rajagopal, K.R. Anomalous features in the model of “second order fluids”. Arch. Ration. Mech. Anal. 1979, 70, 145–152. [Google Scholar] [CrossRef]
- Dunn, J.E.; Rajagopal, K.R. Fluids of differential type: Critical review and thermodynamic analysis. Int. J. Eng. Sci. 1995, 33, 689–729. [Google Scholar] [CrossRef]
- Rajagopal, K.R. On some unresolved issues in non-linear fluid dynamics. Russ. Math. Surv. 2003, 58, 319–330. [Google Scholar] [CrossRef]
- Xu, H.; Cui, J. Mixed convection flow in a channel with slip in a porous medium saturated with a nanofluid containing both nanoparticles and microorganisms. Int. J. Heat Mass Transf. 2018, 125, 1043–1053. [Google Scholar] [CrossRef]
- Wang, G.J.; Hadjiconstantinou, N.G. Universal molecular-kinetic scaling relation for slip of a simple fluid at a solid boundary. Phys. Rev. Fluids 2019, 4, 064201. [Google Scholar] [CrossRef]
- Wilms, P.; Wieringa, J.; Blijdenstein, T.; van Malssen, K.; Hinrichs, J. Wall slip of highly concentrated non-Brownian suspensions in pressure driven flows: A geometrical dependency put into a non-Newtonian perspective. J. Non-Newton. Fluid Mech. 2020, 282, 104336. [Google Scholar] [CrossRef]
- Ghahramani, N.; Georgiou, G.C.; Mitsoulis, E.; Hatzikiriakos, S.G. J.G. Oldroyd’s early ideas leading to the modern understanding of wall slip. J. Non-Newton. Fluid Mech. 2021, 293, 104566. [Google Scholar] [CrossRef]
- Rana, M.A.; Latif, A. Three-dimensional free convective flow of a second-grade fluid through a porous medium with periodic permeability and heat transfer. Bound. Value Probl. 2019, 44. [Google Scholar] [CrossRef]
- Sehra; Haq, S.U.; Jan, S.U.; Bilal, R.; Alzahrani, J.H.; Khan, I.; Alzahrani, A. Heat-mass transfer of MHD second grade fluid flow with exponential heating, chemical reaction and porosity by using fractional Caputo-Fabrizio derivatives. Case Stud. Therm. Eng. 2022, 36, 102104. [Google Scholar] [CrossRef]
- Baranov, A.V. Nonisothermal dissipative flow of viscous liquid in a porous channel. High Temp. 2017, 55, 414–419. [Google Scholar] [CrossRef]
- Goruleva, L.S.; Prosviryakov, E.Y. A new class of exact solutions to the Navier–Stokes equations with allowance for internal heat release. Opt. Spectrosc. 2022, 130, 365–370. [Google Scholar] [CrossRef]
- Privalova, V.V.; Prosviryakov, E.Y. A new class of exact solutions of the Oberbeck–Boussinesq equations describing an incompressible fluid. Theor. Found. Chem. Eng. 2022, 56, 331–338. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Artemov, M.A. Steady flows of second-grade fluids in a channel. Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsessy Upr. 2017, 13, 342–353. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Artemov, M.A. Steady flows of second grade fluids subject to stick-slip boundary conditions. In Proceedings of the 23rd International Conference Engineering Mechanics, Svratka, Czech Republic, 15–18 May 2017; pp. 110–113. [Google Scholar]
- Ting, T.W. Certain unsteady flows of second grade fluids. Arch. Ration. Mech. Anal. 1963, 14, 1–26. [Google Scholar] [CrossRef]
- Coleman, B.D.; Duffin, R.J.; Mizel, V.J. Instability, uniqueness, and nonexistence theorems for the equation ut = uxx − uxtx on a strip. Arch. Ration. Mech. Anal. 1965, 19, 100–116. [Google Scholar] [CrossRef]
- Hron, J.; Le Roux, C.; Malek, J.; Rajagopal, K.R. Flows of incompressible fluids subject to Navier’s slip on the boundary. Comput. Math. Appl. 2008, 56, 2128–2143. [Google Scholar] [CrossRef]
- Nazar, M.; Fetecau, C.; Vieru, D.; Fetecau, C. New exact solutions corresponding to the second problem of Stokes for second grade fluids. Nonlinear Anal. Real World Appl. 2010, 11, 584–591. [Google Scholar] [CrossRef]
- Fetecau, C.; Zafar, A.A.; Vieru, D.; Awrejcewicz, J. Hydromagnetic flow over a moving plate of second grade fluids with time fractional derivatives having non-singular kernel. Chaos Solit. Fractals. 2020, 130, 109454. [Google Scholar] [CrossRef]
- Fetecau, C.; Vieru, D. On an important remark concerning some MHD motions of second grade fluids through porous media and its applications. Symmetry 2022, 14, 1921. [Google Scholar] [CrossRef]
- Fetecau, C.; Vieru, D. General solutions for some MHD motions of second-grade fluids between parallel plates embedded in a porous medium. Symmetry 2023, 15, 183. [Google Scholar] [CrossRef]
- Cioranescu, D.; Ouazar, E.H. Existence and uniqueness for fluids of second-grade. Nonlinear Partial. Differ. Equ. Their Appl. 1984, 109, 178–197. [Google Scholar]
- Cioranescu, D.; Girault, V. Weak and classical solutions of a family of second grade fluids. Int. J. Non-Linear Mech. 1997, 32, 317–335. [Google Scholar] [CrossRef]
- Le Roux, C. Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions. Arch. Ration. Mech. Anal. 1999, 148, 309–356. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Existence results for regularized equations of second-grade fluids with wall slip. Electron. J. Qual. Theory Differ. Equ. 2015, 91. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Weak solvability of equations modeling steady-state flows of second-grade fluids. Differ. Equ. 2020, 56, 1318–1323. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Solvability of the stationary optimal control problem for motion equations of second grade fluids. Sib. Electron. Math. Rep. 2012, 9, 554–560. [Google Scholar]
- Chemetov, N.V.; Cipriano, F. Optimal control for two-dimensional stochastic second grade fluids. Stoch. Proc. Their Appl. 2018, 128, 2710–2749. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Optimal boundary control of the Boussinesq approximation for polymeric fluids. J. Optim. Theory Appl. 2021, 189, 623–645. [Google Scholar] [CrossRef]
- Almeida, A.; Chemetov, N.V.; Cipriano, F. Uniqueness for optimal control problems of two-dimensional second grade fluids. Electron. J. Differ. Equ. 2022, 22. [Google Scholar]
- Le Roux, C.; Tani, A. Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions. Math. Meth. Appl. Sci. 2007, 30, 595–624. [Google Scholar] [CrossRef]
- Navier, C.L.M.H. Mémoire sur le lois du mouvement des fluides. Mémoires L’académie Sci. L’institut Fr. 1823, 6, 389–416. [Google Scholar]
- Solonnikov, V.A.; Ščadilov, V.E. On a boundary value problem for a stationary system of Navier–Stokes equations. Proc. Steklov Inst. Math. 1973, 125, 186–199. [Google Scholar]
- Burmasheva, N.V.; Larina, E.A.; Prosviryakov, E.Y. A Couette-type flow with a perfect slip condition on a solid surface. Vestn. Tomsk. Gos. Univ. Mat. Mekh. 2021, 74, 79–94. [Google Scholar] [CrossRef]
- Gkormpatsis, S.D.; Housiadas, K.D.; Beris, A.N. Steady sphere translation in weakly viscoelastic UCM/Oldroyd-B fluids with perfect slip on the sphere. Eur. J. Mech. B Fluids 2022, 95, 335–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskii, E.S. Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates. Nanomaterials 2023, 13, 1409. https://doi.org/10.3390/nano13081409
Baranovskii ES. Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates. Nanomaterials. 2023; 13(8):1409. https://doi.org/10.3390/nano13081409
Chicago/Turabian StyleBaranovskii, Evgenii S. 2023. "Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates" Nanomaterials 13, no. 8: 1409. https://doi.org/10.3390/nano13081409
APA StyleBaranovskii, E. S. (2023). Exact Solutions for Non-Isothermal Flows of Second Grade Fluid between Parallel Plates. Nanomaterials, 13(8), 1409. https://doi.org/10.3390/nano13081409