Hierarchically Developed Ni(OH)2@MgCo2O4 Nanosheet Composites for Boosting Supercapacitor Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of MgCo2O4 Nanoflakes Grown on Ni Foam
2.2. Preparation of Ni(OH)2@MgCo2O4 Nanosheet Composite
2.3. Measurements and Characterizations
2.4. Measurements and Characterizations
3. Results and Discussion
Electrochemical Properties of Electrode Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, J.H.; Kumar, Y.A.; Sambasivam, S.; Hira, S.A.; Krishna, T.N.V.; Zeb, K.; Uddin, W.; Kumar, K.D.; Obaidat, I.M.; Kim, S.; et al. Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors. J. Energy Storage 2020, 32, 101988. [Google Scholar] [CrossRef]
- Mun, C.H.; Gopi, C.V.V.M.; Vinodh, R.; Sambasivam, S.; Obaidat, I.M.; Kim, H.J. Microflower-like nickel sulfide-lead sulfide hierarchical composites as binder-free electrodes for high-performance supercapacitors. J. Energy Storage 2019, 26, 100925. [Google Scholar] [CrossRef]
- Gopi, C.V.V.M.; Vinodh, R.; Sambasivam, S.; Obaidat, I.M.; Kalla, R.M.N.; Kim, H.J. One-pot synthesis of copper oxide–cobalt oxide core–shell nanocactus-like heterostructures as binder-free electrode materials for high-rate hybrid supercapacitors. Mater. Today Energy 2019, 14, 100358. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Sambasivam, S.; Hira, S.A.; Zeb, K.; Uddin, W.; Krishna, T.N.V.; Kumar, K.D.; Obaidat, I.M.; Kim, H.J. Boosting the energy density of highly efficient flexible hybrid supercapacitors via selective integration of hierarchical nanostructured energy materials. Electrochim. Acta 2020, 364, 137318. [Google Scholar] [CrossRef]
- Bhat, V.S.; Hegde, G.; Nasrollahzadeh, M. A sustainable technique to solve growing energy demand: Porous carbon nanoparticles as electrode materials for high-performance supercapacitors. J. Appl. Electrochem. 2020, 50, 1243–1255. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Bao, J.; Lian, J.; Cheng, M.; Li, H. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors. J. Alloys Compd. 2019, 772, 337–347. [Google Scholar] [CrossRef]
- Elshahawy, A.M.; Li, X.; Zhang, H.; Hu, Y.T.; Ho, K.H.; Guan, C.; Wang, J. Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 7494–7506. [Google Scholar] [CrossRef]
- Sun, W.; Du, Y.; Wu, G.; Gao, G.; Zhu, H.; Shen, J.; Zhang, K.; Cao, G. Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J. Mater. Chem. A 2019, 7, 7138–7150. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, W.; Li, S.; Ci, L.; Si, P. Surfactant-dependent flower- and grass-like Zn0.76Co0.24S/Co3S4 for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 22830–22839. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Dai, Y.; Ren, Y.; Gao, T.; Zhou, G. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem. Eng. J. 2022, 427, 131784. [Google Scholar] [CrossRef]
- Li, Y.; Qian, J.; Zhang, M.; Wang, S.; Wang, Z.; Li, M.; Bai, Y.; An, Q.; Xu, H.; Wu, F.; et al. Co-Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium-Ion Batteries. Adv. Mater. 2020, 32, 2005802. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Wu, T.; Chen, M.; Yang, L.; Yang, J.; Wang, Z.; Kornyshev, A.A.; Jiang, H.; Bi, S.; Feng, G. Conductive Metal-Organic Frameworks for Supercapacitors. Adv. Mater. 2022, 34, e2200999. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kumar, Y.K.; Sambasivam, S.; Hira, S.A.; Zeb, K.; Uddin, W.; Reddy, S.P.R.; Kumar, K.D.; Obaidat, I.M.; Kim, H.J.; et al. CoCu2O4 nanoflowers architecture as an electrode material for battery type supercapacitor with improved electrochemical performance. Nano-Struct. Nano-Objects 2020, 24, 100618. [Google Scholar] [CrossRef]
- Priya, M.S.; Divya, P.; Rajalakshmi, R. A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustain. Chem. Pharm. 2020, 16, 100243. [Google Scholar] [CrossRef]
- Chen, X.; Chen, D.; Guao, X.; Wang, R.; Zhang, H. Facile Growth of Caterpillar-like NiCo2S4 Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 18774–18781. [Google Scholar] [CrossRef]
- Zhou, X.; Yue, X.; Dong, Y.; Zheng, Q.; Lin, D.; Du, X.; Qu, G. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors. J. Colloid Interface Sci. 2021, 599, 68–78. [Google Scholar] [CrossRef]
- Huang, C.; Gao, A.; Yi, F.; Wang, Y.; Shu, D.; Liang, Y.; Zhu, Z.; Ling, J.; Hao, J. Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chem. Eng. J. 2021, 419, 129643. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Z.; Jing, M.; Xuming, J.; Xuming, Y.; Song, W.; Ji, X. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Source 2015, 273, 584–590. [Google Scholar] [CrossRef]
- Arbi, H.M.; Yadav, A.A.; Anil Kumar, Y.; Moniruzzaman, M.; Alzahmi, S.; Obaidat, I.M. Polypyrrole-Assisted Ag Doping Strategy to Boost Co(OH)2 Nanosheets on Ni Foam as a Novel Electrode for High-Performance Hybrid Supercapacitors. Nanomaterials 2022, 12, 3982. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Anil Kumar, Y.; Pallavolu, M.R.; Arbi, H.M.; Alzahmi, S.; Obaidat, I.M. Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO2 Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application. Nanomaterials 2022, 12, 3187. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yu, X.; Tu, J.; Ruan, D.; Qiao, Z.J. High-performance discarded separator-based activated carbon for the application of supercapacitors. J. Energy Storage 2021, 44, 103378. [Google Scholar] [CrossRef]
- Li, J.; Yun, S.; Han, F.; Si, Y.; Arshad, A.; Zhang, Y.; Chidambaram, B.; Zafar, N.; Qiao, X. Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J. Colloid Interface Sci. 2020, 578, 184–194. [Google Scholar] [CrossRef]
- Ariharan, A.; Ramesh, K.; Vinayagamoorthi, R.; Rani, M.S.; Viswanathan, B.; Ramaprabhu, S.; Nandhakumar, V. Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J. Energy Storage 2021, 35, 102185. [Google Scholar] [CrossRef]
- Mallesh, D.; Anbarasan, J.; Kumar, P.M.; Upendar, K.; Chandrashekar, P.; Rao, B.V.S.K.; Lingaiah, N. Synthesis, characterization of carbon adsorbents derived from waste biomass and its application to CO2 capture. Appl. Surf. Sci. 2020, 530, 147226. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Nie, P.; Xu, G.; Shi, M.; Wang, J.; Wu, Y.; Fu, R.; Dou, H.; Zhang, X. Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2018, 2, 1700110. [Google Scholar] [CrossRef]
- Xie, P.; Yuan, W.; Liu, X.; Peng, Y.; Yin, Y.; Li, Y.; Wu, Z. Multifunctional surfactants for synthesizing high-performance energy storage materials. Energy Storage Mater. 2021, 36, 56–76. [Google Scholar] [CrossRef]
- Lobato, B.; Suárez, L.; Guardia, L.; Centeno, T.A. Capacitance and surface of carbons in supercapacitors. Carbon 2017, 122, 434–445. [Google Scholar] [CrossRef]
- Sharma, K.; Arora, A.; Tripathi, S.; Storage, J.E. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar]
- Lin, L.; Liu, J.; Liu, T.; Hao, J.; Ji, K.; Sun, R.; Zeng, W.; Wang, Z. Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. J. Mater. Chem. A 2015, 3, 17652–17658. [Google Scholar] [CrossRef]
- Wan, H.; Jiang, J.; Yu, J.; Xu, K.; Miao, L.; Zhang, L.; Chen, H.; Ruan, Y. NiCo2S4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors. CrystEngComm 2013, 15, 7649–7651. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Q.; Brett, D.J.L.; He, G.; Wang, R.; Key, J.; Ji, S. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. J. Power Source 2017, 343, 76–82. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Zhu, J.; Xiao, F.; Li, Y.; Zhu, X. NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors. CrystEngComm 2016, 18, 2363–2374. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Wu, W.; Qian, J.; Song, S.; Yue, Z.J. Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. J. Power Source 2019, 412, 683–688. [Google Scholar] [CrossRef]
- Ramachandran, T.; Natarajan, S.; Hamed, F. The role of dysprosium levels in the formation of mixed oxidation states within spinel MnCo2−xDyxO4 nanocrystalline powders. J. Electron Spectrosc. Relat. Phenom. 2020, 242, 146952. [Google Scholar] [CrossRef]
- Gu, C.; Ge, X.; Wang, X.; Tu, J. Cation–anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. J. Mater. Chem. A 2015, 3, 14228–14238. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.; Muthurasu, A.; Kim, H.Y. A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L. Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors. Sci. Rep. 2019, 9, 12557. [Google Scholar] [CrossRef]
- Zhu, S.J.; Jia, J.Q.; Wang, T.; Zhao, D.; Yang, J.; Dong, F.; Shang, Z.G.; Zhang, Y.X. Rational design of octahedron and nanowire CeO2@MnO2 core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors†. Chem. Commun. 2015, 51, 14840–14843. [Google Scholar] [CrossRef]
- Vijaykumar, S.; Nagamuthu, S.; Ryu, K.S. In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors. Dalton Trans. 2018, 47, 6722–6728. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, L.; Zhang, J.; Qian, J.; Liu, J.; Zhang, Z.; Zhang, H.; Liu, X. Fabrication of porous double-urchin-like MgCo2O4 hierarchical architectures for high-rate supercapacitors. J. Alloys Compd. 2016, 688, 933–938. [Google Scholar] [CrossRef]
- Silambarasan, M.; Ramesh, P.S.; Geetha, D.; Venkatachalam, V. A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties. J. Mater. Sci. Mater. Electron. 2017, 28, 6880–6888. [Google Scholar] [CrossRef]
- Cui, L.; Huang, L.; Ji, M.; Wang, Y.; Shi, H.; Zuo, Y.; Kang, S. High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: Preparation and application as binder-free electrode for pseudo-supercapacitor. J. Power Source 2016, 333, 118–124. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Sun, Y.; Zhang, J.; Zhang, C.; Zhang, M. Fabrication of porous MgCo2O4 nanoneedle arrays/Ni foam as an advanced electrode material for asymmetric supercapacitors. J. Alloys Compd. 2019, 779, 100–107. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Reddy, M.V.; Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Rahim, M.H.A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 2015, 161, 312–321. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Wang, G.; Hao, C.; Zhou, S.; Huang, C. An urchin-like MgCo2O4@PPy core–shell composite grown on Ni foam for a high-performance all-solid-state asymmetric supercapacitor. Nanoscale 2018, 10, 10190–10202. [Google Scholar] [CrossRef]
Electrode Materials | Electrolyte | Specific Capacitance (F g−1)/Current Density | Cycles (Stability) | Ref. |
---|---|---|---|---|
MgCo2O4@MnO2 | 2 M KOH | 852.5 F g−1 at (1 A g−1) | - | [38] |
CeO2@MnO2 | 1 M Na2SO4 | 255 F g−1 at (1 A g−1) | 3000 (90.1%) | [39] |
MgCo2O4 nanosheets | 2 M KOH | 947 C g−1 (2 A g−1) | 5000 (96%) | [40] |
Double-urchin-like MgCo2O4 | 3 M KOH | 508 F g−1 (2 A g−1) | 2000 (95.9%) | [41] |
1D MgCo2O4 | - | 752 F g−1 (2 mA cm−2) | - | [42] |
MgCo2O4 nanocone arrays | 1 M Na2SO4 | 750 F g−1 (1 A g−1) | 1000 (84%) | [43] |
Porous MgCo2O4 nanoneedle | - | 804 F g−1 (1 A g−1) | 2000 (87%) | [44] |
MgCo2O4 | 2 M KOH | 321 F g−1 (0.5 A g−1) | - | [45] |
Urchin-like MgCo2O4@PPy | - | 1076.9 F g−1 (1 A g−1) | 1000 (97.4%) | [46] |
Ni(OH)2@MgCo2O4 | 2 M KOH | 1287 F g−1 at 1 A g−1 | 3500 (85.6%) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arbi, H.M.; Koyyada, G.; Anil Kumar, Y.; Kumar Kulurumotlakatla, D.; Kim, J.H.; Moniruzzaman, M.; Alzahmi, S.; Obaidat, I.M. Hierarchically Developed Ni(OH)2@MgCo2O4 Nanosheet Composites for Boosting Supercapacitor Performance. Nanomaterials 2023, 13, 1414. https://doi.org/10.3390/nano13081414
Arbi HM, Koyyada G, Anil Kumar Y, Kumar Kulurumotlakatla D, Kim JH, Moniruzzaman M, Alzahmi S, Obaidat IM. Hierarchically Developed Ni(OH)2@MgCo2O4 Nanosheet Composites for Boosting Supercapacitor Performance. Nanomaterials. 2023; 13(8):1414. https://doi.org/10.3390/nano13081414
Chicago/Turabian StyleArbi, Hammad Mueen, Ganesh Koyyada, Yedluri Anil Kumar, Dasha Kumar Kulurumotlakatla, Jae Hong Kim, Md Moniruzzaman, Salem Alzahmi, and Ihab M. Obaidat. 2023. "Hierarchically Developed Ni(OH)2@MgCo2O4 Nanosheet Composites for Boosting Supercapacitor Performance" Nanomaterials 13, no. 8: 1414. https://doi.org/10.3390/nano13081414
APA StyleArbi, H. M., Koyyada, G., Anil Kumar, Y., Kumar Kulurumotlakatla, D., Kim, J. H., Moniruzzaman, M., Alzahmi, S., & Obaidat, I. M. (2023). Hierarchically Developed Ni(OH)2@MgCo2O4 Nanosheet Composites for Boosting Supercapacitor Performance. Nanomaterials, 13(8), 1414. https://doi.org/10.3390/nano13081414