Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fabrication
3.2. Measurement Results
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmid, G.; Corain, B. Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities. EurJIC 2003, 2003, 3081–3098. [Google Scholar] [CrossRef]
- Maurer, J.H.; Gonzalez-Garcia, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated Self-Assembly of Ultrathin Gold Nanowires by Nanoimprinting for Transparent Flexible Electronics. Nano Lett. 2016, 16, 2921–2925. [Google Scholar] [CrossRef] [PubMed]
- Reiser, B.; Gonzalez-Garcia, L.; Kanelidis, I.; Maurer, J.H.M.; Kraus, T. Gold nanorods with conjugated polymer ligands: Sintering-free conductive inks for printed electronics. Chem. Sci. 2016, 7, 4190–4196. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Kong, D.; Ebendorff-Heidepriem, H. Flexible Plasmonic Tapes with Nanohole and Nanoparticle Arrays for Refractometric and Strain Sensing. ACS Appl. Nano Mater. 2020, 3, 8242–8246. [Google Scholar] [CrossRef]
- Schlicke, H.; Rebber, M.; Kunze, S.; Vossmeyer, T. Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale 2016, 8, 183–186. [Google Scholar] [CrossRef]
- Schlicke, H.; Kunze, S.; Rebber, M.; Schulz, N.; Riekeberg, S.; Trieu, H.K.; Vossmeyer, T. Cross-Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors. Adv. Funct. Mater. 2020, 30, 2003381. [Google Scholar] [CrossRef]
- Su, Y.S.; Yang, W.R.; Jheng, W.W.; Kuo, W.; Tzeng, S.D.; Yasuda, K.; Song, J.M. Optimization of Piezoresistive Strain Sensors Based on Gold Nanoparticle Deposits on PDMS Substrates for Highly Sensitive Human Pulse Sensing. Nanomaterials 2022, 12, 2312. [Google Scholar] [CrossRef]
- Ketelsen, B.; Yesilmen, M.; Schlicke, H.; Noei, H.; Su, C.H.; Liao, Y.C.; Vossmeyer, T. Fabrication of Strain Gauges via Contact Printing: A Simple Route to Healthcare Sensors Based on Cross-Linked Gold Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 37374–37385. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chen, H.A.; Lin, H.N. Fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing. Anal. Chem. 2008, 80, 1937–1941. [Google Scholar] [CrossRef]
- Hsu, M.S.; Chen, Y.L.; Lee, C.Y.; Chiu, H.T. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl. Mater. Interfaces 2012, 4, 5570–5575. [Google Scholar] [CrossRef]
- Joseph, Y.; Krasteva, N.; Besnard, I.; Guse, B.; Rosenberger, M.; Wild, U.; Knop-Gericke, A.; Schlogl, R.; Krustev, R.; Yasuda, A.; et al. Gold-nanoparticle/organic linker films: Self-assembly, electronic and structural characterisation, composition and vapour sensitivity. Faraday Discuss. 2004, 125, 77–97, discussion 99–116. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Chandekar, A.; Kang, B.; Sung, C.; Whitten, J.E. Electrical Conductivity and Vapor-Sensing Properties of ω-(3-Thienyl)alkanethiol-Protected Gold Nanoparticle Films. Chem. Mater. 2004, 16, 3274–3278. [Google Scholar] [CrossRef]
- Milyutin, Y.; Abud-Hawa, M.; Kloper-Weidenfeld, V.; Mansour, E.; Broza, Y.Y.; Shani, G.; Haick, H. Fabricating and printing chemiresistors based on monolayer-capped metal nanoparticles. Nat. Protoc. 2021, 16, 2968–2990. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, R.; Fraschina, C.; Dielacher, B.; Sannomiya, T.; Dahlin, A.B.; Voros, J. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays. Nanoscale 2013, 5, 4966–4975. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Pan, Q.; Wu, T.; Xie, H.; Xue, T.; Su, M.; Song, Y. Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. Nanoscale 2022, 14, 14956–14961. [Google Scholar] [CrossRef]
- Barrow, S.J.; Funston, A.M.; Gomez, D.E.; Davis, T.J.; Mulvaney, P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett. 2011, 11, 4180–4187. [Google Scholar] [CrossRef]
- Slaughter, L.S.; Willingham, B.A.; Chang, W.S.; Chester, M.H.; Ogden, N.; Link, S. Toward plasmonic polymers. Nano Lett. 2012, 12, 3967–3972. [Google Scholar] [CrossRef]
- Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V.V.; Chanana, M.; Konig, T.A.; Fery, A. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett. 2014, 14, 6863–6871. [Google Scholar] [CrossRef]
- Tebbe, M.; Mayer, M.; Glatz, B.A.; Hanske, C.; Probst, P.T.; Muller, M.B.; Karg, M.; Chanana, M.; Konig, T.A.; Kuttner, C.; et al. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas. Faraday Discuss. 2015, 181, 243–260. [Google Scholar] [CrossRef]
- Mueller, M.; Tebbe, M.; Andreeva, D.V.; Karg, M.; Alvarez Puebla, R.A.; Pazos Perez, N.; Fery, A. Large-area organization of pNIPAM-coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir 2012, 28, 9168–9173. [Google Scholar] [CrossRef]
- Pazos-Pérez, N.; Ni, W.; Schweikart, A.; Alvarez-Puebla, R.A.; Fery, A.; Liz-Marzán, L.M. Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem. Sci. 2010, 1, 174. [Google Scholar] [CrossRef]
- Horváth, B.; Křivová, B.; Bolat, S.; Schift, H. Fabrication of Large Area Sub-200 nm Conducting Electrode Arrays by Self-Confinement of Spincoated Metal Nanoparticle Inks. Adv. Mater. Technol. 2019, 4, 1800652. [Google Scholar] [CrossRef]
- Steiner, A.M.; Mayer, M.; Seuss, M.; Nikolov, S.; Harris, K.D.; Alexeev, A.; Kuttner, C.; Konig, T.A.F.; Fery, A. Macroscopic Strain-Induced Transition from Quasi-infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers. ACS Nano 2017, 11, 8871–8880. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.C.; Moon, G.D.; Cho, E.C.; Jeong, U. Repeated Transfer of Colloidal Patterns by Using Reversible Buckling Process. Adv. Funct. Mater. 2009, 19, 2155–2162. [Google Scholar] [CrossRef]
- Tadimety, A.; Kready, K.M.; Chorsi, H.T.; Zhang, L.; Palinski, T.J.; Zhang, J.X.J. Nanowrinkled thin films for nanorod assembly in microfluidics. Microfluid. Nanofluid. 2019, 23, 17. [Google Scholar] [CrossRef]
- Rey, A.; Billardon, G.; Lortscher, E.; Moth-Poulsen, K.; Stuhr-Hansen, N.; Wolf, H.; Bjornholm, T.; Stemmer, A.; Riel, H. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications. Nanoscale 2013, 5, 8680–8688. [Google Scholar] [CrossRef] [PubMed]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, T.; Martinez-Reyes, A.; Arce, D.D.R.; Kelling, J.; Samano, E.C.; Erbe, A. Fabrication and temperature-dependent electrical characterization of a C-shape nanowire patterned by a DNA origami. Sci. Rep. 2021, 11, 1922. [Google Scholar] [CrossRef]
- Mutiso, R.M.; Winey, K.I. Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 2013, 88, 032134. [Google Scholar] [CrossRef]
- Ahn, B.Y.; Lorang, D.J.; Lewis, J.A. Transparent conductive grids via direct writing of silver nanoparticle inks. Nanoscale 2011, 3, 2700–2702. [Google Scholar] [CrossRef]
- Liao, J.; Mangold, M.A.; Grunder, S.; Mayor, M.; Schönenberger, C.; Calame, M. Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New J. Phys. 2008, 10, 065019. [Google Scholar] [CrossRef]
- Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Forster, S.; Bals, S.; et al. Nanorattles with tailored electric field enhancement. Nanoscale 2017, 9, 9376–9385. [Google Scholar] [CrossRef] [PubMed]
- Hendel, T.; Wuithschick, M.; Kettemann, F.; Birnbaum, A.; Rademann, K.; Polte, J. In situ determination of colloidal gold concentrations with UV-vis spectroscopy: Limitations and perspectives. Anal. Chem. 2014, 86, 11115–11124. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Yagi, Y.; Hatakeyama, T.; Wakabayashi, T.; Kamiyama, T.; Suzuki, H. Metastable and stable phase diagrams and thermodynamic properties of the cetyltrimethylammonium bromide (CTAB)/water binary system. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126859. [Google Scholar] [CrossRef]
- Link, S.; Mohamed, M.B.; El-Sayed, M.A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077, Correction in J. Phys. Chem. B 2005, 109, 10531–10532. [Google Scholar] [CrossRef]
- Brioude, A.; Jiang, X.C.; Pileni, M.P. Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B 2005, 109, 13138–13142. [Google Scholar] [CrossRef]
- Schweikart, A.; Fortini, A.; Wittemann, A.; Schmidt, M.; Fery, A. Nanoparticle assembly by confinement in wrinkles: Experiment and simulations. Soft Matter 2010, 6, 5860. [Google Scholar] [CrossRef]
- Schletz, D.; Schultz, J.; Potapov, P.L.; Steiner, A.M.; Krehl, J.; König, T.A.F.; Mayer, M.; Lubk, A.; Fery, A. Exploiting Combinatorics to Investigate Plasmonic Properties in Heterogeneous Ag–Au Nanosphere Chain Assemblies. Adv. Opt. Mater. 2021, 9, 2001983. [Google Scholar] [CrossRef]
- Chiche, A.; Stafford, C.M.; Cabral, J.T. Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter 2008, 4, 2360. [Google Scholar] [CrossRef]
- Claussen, K.U.; Tebbe, M.; Giesa, R.; Schweikart, A.; Fery, A.; Schmidt, H.-W. Towards tailored topography: Facile preparation of surface-wrinkled gradient poly(dimethyl siloxane) with continuously changing wavelength. RSC Adv. 2012, 2, 10185. [Google Scholar] [CrossRef]
- Glatz, B.A.; Fery, A. The influence of plasma treatment on the elasticity of the in situ oxidized gradient layer in PDMS: Towards crack-free wrinkling. Soft Matter 2018, 15, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zamborini, F.P.; Leopold, M.C.; Hicks, J.F.; Kulesza, P.J.; Malik, M.A.; Murray, R.W. Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. J. Am. Chem. Soc. 2002, 124, 8958–8964. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, R.; Lin, X.-M.; Jaeger, H.M. Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior. Phys. Rev. Lett. 2001, 87, 186807. [Google Scholar] [CrossRef]
- Wuelfing, W.P.; Murray, R.W. Electron Hopping through Films of Arenethiolate Monolayer-Protected Gold Clusters. J. Phys. Chem. B 2002, 106, 3139–3145. [Google Scholar] [CrossRef]
- Wessels, J.M.; Nothofer, H.G.; Ford, W.E.; von Wrochem, F.; Scholz, F.; Vossmeyer, T.; Schroedter, A.; Weller, H.; Yasuda, A. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J. Am. Chem. Soc. 2004, 126, 3349–3356. [Google Scholar] [CrossRef]
- Liljeroth, P.; Vanmaekelbergh, D.; Ruiz, V.; Kontturi, K.; Jiang, H.; Kauppinen, E.; Quinn, B.M. Electron transport in two-dimensional arrays of gold nanocrystals investigated by scanning electrochemical microscopy. J. Am. Chem. Soc. 2004, 126, 7126–7132. [Google Scholar] [CrossRef]
- Park, H.; Lim, A.K.L.; Alivisatos, A.P.; Park, J.; McEuen, P.L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303. [Google Scholar] [CrossRef]
- Pearson, A.C.; Liu, J.; Pound, E.; Uprety, B.; Woolley, A.T.; Davis, R.C.; Harb, J.N. DNA origami metallized site specifically to form electrically conductive nanowires. J. Phys. Chem. B 2012, 116, 10551–10560. [Google Scholar] [CrossRef]
- Teschome, B.; Facsko, S.; Schonherr, T.; Kerbusch, J.; Keller, A.; Erbe, A. Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. Langmuir 2016, 32, 10159–10165. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005, 21, 2923–2929. [Google Scholar] [CrossRef]
- Wang, R.; Zimmermann, P.; Schletz, D.; Hoffmann, M.; Probst, P.; Fery, A.; Nagel, J.; Rossner, C. Nano meets macro: Furnishing the surface of polymer molds with gold-nanoparticle arrays. Nano Select. 2022, 3, 1502–1508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, M.; Schedel, C.A.; Mayer, M.; Rossner, C.; Scheele, M.; Fery, A. Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. Nanomaterials 2023, 13, 1466. https://doi.org/10.3390/nano13091466
Hoffmann M, Schedel CA, Mayer M, Rossner C, Scheele M, Fery A. Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. Nanomaterials. 2023; 13(9):1466. https://doi.org/10.3390/nano13091466
Chicago/Turabian StyleHoffmann, Marisa, Christine Alexandra Schedel, Martin Mayer, Christian Rossner, Marcus Scheele, and Andreas Fery. 2023. "Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods" Nanomaterials 13, no. 9: 1466. https://doi.org/10.3390/nano13091466
APA StyleHoffmann, M., Schedel, C. A., Mayer, M., Rossner, C., Scheele, M., & Fery, A. (2023). Heading toward Miniature Sensors: Electrical Conductance of Linearly Assembled Gold Nanorods. Nanomaterials, 13(9), 1466. https://doi.org/10.3390/nano13091466