Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis of Graphene Oxide Sheets
2.3. Preparation of Sodium Alginate Microspheres
2.4. Preparation of Alginate-Cefotaxime (Alg-CTX) Microspheres
2.5. Preparation of Alginate-Cefotaxime-Reduced Graphene (Alg-CTX-rGO) Microspheres
2.6. In Vitro Release Study
2.7. Antibacterial Activity Study
2.8. Characterization Techniques
3. Results and Discussions
3.1. Preparation of Microspheres
3.2. The Topographical Properties and Surface Roughness of Microspheres
3.3. Fourier-Transforms Infrared Spectroscopy (FT-IR)
3.4. X-ray Diffraction (XRD) Spectroscopy
3.5. In Vitro Drug Release Study
3.6. Antibacterial Activity Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, K.; Bhattacharya, S. The Ascension of Nanosponges as a Drug Delivery Carrier: Preparation, Characterization, and Applications. J. Mater. Sci. Mater. Med. 2022, 33, 28. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front. Mol. Biosci. 2022, 9, 774097. [Google Scholar] [CrossRef]
- Hertz, F.B.; Andreasen, M.R.; Almind, S.R.; Nielsen, K.L.; Hansen, K.H.; Jelsbak, L.; Frimodt-Møller, N.; Schønning, K. Efficacy of Piperacillin-Tazobactam and Cefotaxime against Escherichia coli Hyperproducing TEM-1 in a Mouse Peritonitis Infection Model. Int. J. Antimicrob. Agents 2022, 59, 106543. [Google Scholar] [CrossRef]
- Rudnicki, K.; Sobczak, K.; Kaliszczak, M.; Sipa, K.; Powałka, E.; Skrzypek, S.; Poltorak, L.; Herzog, G. Voltammetric Study of Cefotaxime at the Macroscopic and Miniaturized Interface between Two Immiscible Electrolyte Solutions. Microchim. Acta 2021, 188, 413. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Yang, Y.; Chen, B.; Li, J.; Guo, G.; Xiong, F. Case Report: First Case of Cefotaxime-Sulbactam-Induced Acute Intravascular Hemolysis in a Newborn With ABO Blood Type Incompatibility by the Mechanism of Non-Immunologic Protein Adsorption. Front. Immunol. 2021, 12, 5569. [Google Scholar] [CrossRef]
- Fiore, C.; Baraghini, A.; Shemchuk, O.; Sambri, V.; Morotti, M.; Grepioni, F.; Braga, D. Inhibition of the Antibiotic Activity of Cephalosporines by Co-Crystallization with Thymol. Cryst. Growth Des. 2022, 22, 1467–1475. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, X.; Li, J.; Jiang, Y.; Xu, K.; Su, J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front. Pharmacol. 2022, 13, 909408. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Wang, Y.; Chen, H.; Zhang, X.; Luo, C.; Zhou, W.; Li, L.; Teng, L.; Yu, H.; et al. Smart Drug Delivery Systems for Precise Cancer Therapy. Acta Pharm. Sin. B 2022, 12, 4098–4121. [Google Scholar] [CrossRef]
- Yadav, N.; Singh, D.; Rawat, M.; Sangwan, N. Novel Archetype in Cancer Therapeutics: Exploring Prospective of Phytonanocarriers. 3 Biotech 2022, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Volpi, M.; Paradiso, A.; Costantini, M.; Świȩszkowski, W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater. Sci. Eng. 2022, 8, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Afshar, A.; Gultekinoglu, M.; Edirisinghe, M. Binary Polymer Systems for Biomedical Applications. Int. Mater. Rev. 2022, 68, 184–224. [Google Scholar] [CrossRef]
- Karmakar, S.; Manna, S.; Kabiraj, S.; Jana, S. Recent Progress in Alginate-Based Carriers for Ocular Targeting of Therapeutics. Food Hydrocoll. Health 2022, 2, 100071. [Google Scholar] [CrossRef]
- Dalavi, P.A.; Prabhu, A.; M, S.; Chatterjee, K.; Venkatesan, J. Casein-Coated Molybdenum Disulfide Nanosheets Augment the Bioactivity of Alginate Microspheres for Orthopedic Applications. ACS Omega 2022, 7, 26092–26106. [Google Scholar] [CrossRef]
- Raus, R.A.; Nawawi, W.M.F.W.; Nasaruddin, R.R. Alginate and Alginate Composites for Biomedical Applications. Asian J. Pharm. Sci. 2021, 16, 280–306. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Jensen, P.Ø.; Fiandaca, M.J.; Pedersen, J.; Hansen, C.R.; Andersen, C.B.; Pressler, T.; Givskov, M.; Høiby, N. Pseudomonas Aeruginosa Biofilms in the Respiratory Tract of Cystic Fibrosis Patients. Pediatr. Pulmonol. 2009, 558, 547–558. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage Therapy against Pseudomonas Aeruginosa Biofilms: A Review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas Aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Lampp, J.W.; Griswold, K.E. Alginate Lyase Exhibits Catalysis-Independent Biofilm Dispersion and Antibiotic Synergy. Antimicrob. Agents Chemother. 2013, 57, 137–145. [Google Scholar] [CrossRef]
- Alkawash, M.A.; Soothill, J.S.; Schiller, N.L. Alginate Lyase Enhances Antibiotic Killing of Mucoid Pseudomonas Aeruginosa in Biofilms. APMIS 2006, 2, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Germoni, L.A.P.; Bremer, P.J.; Lamont, I.L. The Effect of Alginate Lyase on the Gentamicin Resistance of Pseudomonas Aeruginosa in Mucoid Biofilms. J. Appl. Microbiol. 2016, 121, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Sergi, R.; Bellucci, D.; Cannillo, V. Materials A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials 2020, 13, 5560. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- Dodero, A.; Iravani, S.; Varma, R.S. Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy. Mar. Drugs 2022, 20, 598. [Google Scholar] [CrossRef]
- Shibu, E.S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials Formulations for Photothermal and Photodynamic Therapy of Cancer. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 53–72. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, A.; Saji, J.; Umapathi, A.; Kumar, S.; Daima, H.K. Smart Nanomaterials for Cancer Diagnosis and Treatment. Nano Converg. 2022, 9, 21. [Google Scholar] [CrossRef]
- Puscaselu, R.G.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate Gel Particles–A Review of Production Techniques and Physical Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Xue, C. Alginate-Based Delivery Systems for Food Bioactive Ingredients: An Overview of Recent Advances and Future Trends. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5345–5369. [Google Scholar] [CrossRef] [PubMed]
- Bratek-Skicki, A. Towards a New Class of Stimuli-Responsive Polymer-Based Materials-Recent Advances and Challenges. Appl. Surf. Sci. Adv. 2021, 4, 100068. [Google Scholar] [CrossRef]
- Cai, M.H.; Chen, X.Y.; Fu, L.Q.; Du, W.L.; Yang, X.; Mou, X.Z.; Hu, P.Y. Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends in Anticancer Drug Delivery and Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 630943. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Kumar, L.; Mehta, S.; Mehta, A. Stimuli-Sensitive Systems-an Emerging Delivery System for Drugs. Artif. Cells Nanomed. Biotechnol. 2015, 43, 299–310. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, H.; Kukkar, D. Synthesis and Characterization of Graphene Oxide Using Modified Hummer’s Method. AIP Conf. Proc. 2018, 1953, 030180. [Google Scholar] [CrossRef]
- Murray, P.R.; Zeitinger, J.R. Evaluation of Mueller-Hinton Agar for Disk Diffusion Susceptibility Tests. J. Clin. Microbiol. 1983, 18, 1269–1271. [Google Scholar] [CrossRef]
- Jamil, B.; Habib, H.; Abbasi, S.A.; Ihsan, A.; Nasir, H.; Imran, M. Development of Cefotaxime Impregnated Chitosan as Nano-Antibiotics: De Novo Strategy to Combat Biofilm Forming Multi-Drug Resistant Pathogens. Front. Microbiol. 2016, 7, 330. [Google Scholar] [CrossRef]
- Shilova, S.V.; Mirgaleev, G.M.; Barabanov, V.P. PH-Responsive Calcium Alginate Microspheres Modified with Chitosan for Immobilization of Antibiotic Cefotaxime. Polym. Sci. Ser. A 2022, 64, 447–455. [Google Scholar] [CrossRef]
- Das, N.S.; Gogoi, K.K.; Das, S.; Chowdhury, A. Spectroscopic and Structural Investigation of Graphene Oxide Synthesized via Hummers’ Method. Lect. Notes Mech. Eng. 2021, 207–213. [Google Scholar] [CrossRef]
- Grząbka-Zasadzińska, A.; Ratajczak, I.; Król, K.; Woźniak, M.; Borysiak, S. The Influence of Crystalline Structure of Cellulose in Chitosan-Based Biocomposites on Removal of Ca(II), Mg(II), Fe(III) Ion in Aqueous Solutions. Cellulose 2021, 28, 5745–5759. [Google Scholar] [CrossRef]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef] [PubMed]
- Abd Elhaleem, M.B.; Farghali, A.A.; El-Shahawy, A.A.; El-Ela FI, A.; Eldine, Z.E.; Mahmoud, R.K. Chemisorption and Sustained Release of Cefotaxime between a Layered Double Hydroxide and Polyvinyl Alcohol Nanofibers for Enhanced Efficacy Against Second Degree Burn Wound Infection. RSC Adv. 2020, 10, 13196–13214. [Google Scholar] [CrossRef] [PubMed]
- Komarala, E.P.; Doshi, S.; Thiyagarajan, S.; Aslam, M.; Bahadur, D. Studies on Drug Release Kinetics and Antibacterial Activity against Drug-Resistant Bacteria of Cefotaxime Sodium Loaded Layered Double Hydroxide–Fenugreek Nanohybrid. New J. Chem. 2018, 42, 129–136. [Google Scholar] [CrossRef]
- Javaid, S.; Ahmad, N.M.; Mahmood, A.; Nasir, H.; Iqbal, M.; Ahmad, N.; Irshad, S. Cefotaxime Loaded Polycaprolactone Based Polymeric Nanoparticles with Antifouling Properties for In-Vitro Drug Release Applications. Polymers 2021, 13, 2180. [Google Scholar] [CrossRef]
- Baikin, A.S.; Kaplan, M.A.; Nasakina, E.O.; Shatova, L.A.; Tsareva, A.M.; Kolmakova, A.A.; Danilova, E.A.; Tishurova, Y.A.; Bunkin, N.F.; Gudkov, S.V.; et al. Development of a Biocompatible and Biodegradable Polymer Capable of Long-Term Release of Biologically Active Substances for Medicine and Agriculture. Dokl. Chem. 2019, 489, 261–263. [Google Scholar] [CrossRef]
- Alipour, A.; Babaei Shekardasht, M.; Gharbani, P. Preparation, Characterization, and in Vitro Bioactivity of Magnetic Co-polymer as a New Nanocarrier For. Wiley Online Libr. 2021, 138, 50900. [Google Scholar] [CrossRef]
- Razdan, K.; Sahajpal, N.S.; Singh, K.; Singh, H.; Singh, H.; Jain, S.K. Formulation of Sustained-Release Microspheres of Cefixime with Enhanced Oral Bioavailability and Antibacterial Potential. Ther. Deliv. 2019, 10, 769–782. [Google Scholar] [CrossRef]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive Extraction of Phospholipids from Escherichia coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Aunkor, M.T.H.; Raihan, T.; Prodhan, S.H.; Metselaar, H.S.C.; Malik, S.U.F.; Azad, A.K. Antibacterial Activity of Graphene Oxide Nanosheet against Multidrug Resistant Superbugs Isolated from Infected Patients. R. Soc. Open Sci. 2020, 7, 200640. [Google Scholar] [CrossRef]
- Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28, 12364–12372. [Google Scholar] [CrossRef] [PubMed]
Sample | Roughness Parameter | ||
---|---|---|---|
Average Roughness Ra (nm) | Root Mean Square Roughness Rq (nm) | Maximum Roughness Valley Depth Rv (nm) | |
Alg. | 4.62 | 6.2 | 2.09 |
Alg.-CTX. | 4.69 | 6.23 | 4.46 |
Alg.CTX.rGO | 4.92 | 6.23 | 4.85 |
Drug | Method | Release Time (Up to) | Reference |
---|---|---|---|
Cefotaxime | Zn-Al Layered double hydroxides (LDH) with polyvinyl alcohol (PVA) | 12 h | [43] |
Cefotaxime | Mg-Al LDH with fenugreek polymer (CLF nanohybrid) | 18 h | [44] |
Cefotaxime | Polycaprolactone (PCL) nanoparticles | 48 h | [45] |
Cefotaxime | High-molecular-weight polylactide (PLA) films | 24 h | [46] |
Cefotaxime | MNPs by poly (N, Ndimethylaminopropylacrylamide)(pDMAPAAm) | 15 h | [47] |
Cefixime | Ethyl cellulose microspheres | 24 h | [48] |
Cefotaxime | Alginate microspheres | 52 h | this work |
Cefotaxime | Alginate-graphene microspheres | 240 h | this work |
Sample | E. coli |
---|---|
S1 | 4 cm |
S2 | 3 cm |
S3 | -ve |
S4 | 3 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, I.; Emam, M.H.; Wassel, A.R.; Ashraf, K.; Hussan, S.; Kalil, H.; Bayachou, M.; Ibrahim, M.A. Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime. Nanomaterials 2023, 13, 1527. https://doi.org/10.3390/nano13091527
Gomaa I, Emam MH, Wassel AR, Ashraf K, Hussan S, Kalil H, Bayachou M, Ibrahim MA. Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime. Nanomaterials. 2023; 13(9):1527. https://doi.org/10.3390/nano13091527
Chicago/Turabian StyleGomaa, Islam, Merna H. Emam, Ahmed R. Wassel, Kholoud Ashraf, Sara Hussan, Haitham Kalil, Mekki Bayachou, and Medhat A. Ibrahim. 2023. "Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime" Nanomaterials 13, no. 9: 1527. https://doi.org/10.3390/nano13091527
APA StyleGomaa, I., Emam, M. H., Wassel, A. R., Ashraf, K., Hussan, S., Kalil, H., Bayachou, M., & Ibrahim, M. A. (2023). Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime. Nanomaterials, 13(9), 1527. https://doi.org/10.3390/nano13091527