Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterization
Scanning Electron Microscopy and Energy Dispersive X-ray Characterization
3.2. Electrochemical Sensing Performance
3.2.1. Cyclic Voltammetry
3.2.2. Electrochemical Impedance Spectroscopy
3.2.3. APAP Concentration Dependence
3.2.4. Anti-Interference
3.2.5. Stability and Repeatability, Real Sample Measurement, and Comparison with Other Works
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yang, Y.; Ueno, H.; Esch, M.B. Body-in-a-Cube: A microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate. Microphysiol. Syst. 2020, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, J.M.; Jeon, Y.; Lee, J.; Oh, J.; Hooch Antink, W.; Kim, D.; Piao, Y. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sens. Actuators B Chem. 2018, 259, 50–58. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Catalano, M.; Wang, L.; Kim, M.J.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Tailoring MWCNTs and β-Cyclodextrin for Sensitive Detection of Acetaminophen and Estrogen. ACS Appl. Mater. Interfaces 2018, 10, 21411–21427. [Google Scholar] [CrossRef] [PubMed]
- Smarr, M.M.; Grantz, K.L.; Sundaram, R.; Maisog, J.M.; Honda, M.; Kannan, K.; Buck Louis, G.M. Urinary paracetamol and time-to-pregnancy. Hum. Reprod. 2016, 31, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Kung, C.-W.; Wei, H.-Y.; Boopathi, K.M.; Chu, C.-W.; Ho, K.-C. A high performance electrochemical sensor for acetaminophen based on a rGO–PEDOT nanotube composite modified electrode. J. Mater. Chem. A 2014, 2, 7229–7237. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Li, G.; Erk, N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind. Eng. Chem. Res. 2022, 62, 4628–4635. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Shen, X.; Wang, H.; Wang, H.; Xia, K.; Yin, Z.; Zhang, Y. Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small 2021, 17, 2008079. [Google Scholar] [CrossRef]
- Xu, C.; Liu, J.; Bi, Y.; Ma, C.; Bai, J.; Hu, Z.; Zhou, M. Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Anal. Chim. Acta 2020, 1116, 16–26. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Chen, S.; Xu, F.; Chen, S.; Jia, J.; Tan, H.; Hou, H.; Song, Y. Electrochemical Sensing and Biosensing Platform Based on Biomass-Derived Macroporous Carbon Materials. Anal. Chem. 2014, 86, 1414–1421. [Google Scholar] [CrossRef]
- Veerakumar, P.; Koventhan, C.; Chen, S.-M. Copper-palladium alloy nanoparticles immobilized over porous carbon for voltammetric determination of dimetridazole. J. Alloys Compd. 2023, 931, 167474. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Li, Y.; Li, L.; Ma, H.; Wei, K.; Shi, C.; Sun, M.; Duan, R.; Wang, X.; et al. DFT-assisted design inspired by loofah-derived biomass carbon decorated CoFe-CoFe2O4 conjugated molecular imprinting strategy for hazardous thiamphenicol analysis in spiked food. Sens. Actuators B Chem. 2023, 374, 132852. [Google Scholar] [CrossRef]
- Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal. 2023, 222, 115102. [Google Scholar] [CrossRef]
- Abbas, A.; Amin, H.M.A. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem. J. 2022, 175, 107166. [Google Scholar] [CrossRef]
- Song, W.; Li, H.; Liang, H.; Qiang, W.; Xu, D. Disposable Electrochemical Aptasensor Array by Using In Situ DNA Hybridization Inducing Silver Nanoparticles Aggregate for Signal Amplification. Anal. Chem. 2014, 86, 2775–2783. [Google Scholar] [CrossRef]
- Zhu, Y.; Chandra, P.; Shim, Y.-B. Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine–Au Nanoparticle–Aptamer Bioconjugate. Anal. Chem. 2013, 85, 1058–1064. [Google Scholar] [CrossRef]
- Sun, D.; Yang, D.; Wei, P.; Liu, B.; Chen, Z.; Zhang, L.; Lu, J. One-Step Electrodeposition of Silver Nanostructures on 2D/3D Metal–Organic Framework ZIF-67: Comparison and Application in Electrochemical Detection of Hydrogen Peroxide. ACS Appl. Mater. Interfaces 2020, 12, 41960–41968. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Wang, F.; Jing, N.; Jiang, G. Co/Co3O4 Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustain. Chem. Eng. 2019, 7, 18582–18592. [Google Scholar] [CrossRef]
- Mahanthappa, M.; Duraisamy, V.; Arumugam, P.; Senthil Kumar, S.M. Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Acetaminophen on N, P-Doped Hollow Mesoporous Carbon Nanospheres. ACS Appl. Nano Mater. 2022, 5, 18417–18426. [Google Scholar] [CrossRef]
- Mahmoud, B.G.; Khairy, M.; Rashwan, F.A.; Banks, C.E. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms. Anal. Chem. 2017, 89, 2170–2178. [Google Scholar] [CrossRef]
- Chen, L.; Mamat, X.; Aisa, H.A. Determination of aflatoxin B1 by biomass derived porous carbon modified electrode with molecularly imprinted polymer. Electroanalysis 2023, e202200371. [Google Scholar] [CrossRef]
- Yalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wang, P.; Hu, G. N, S, P-Triple Doped Porous Carbon as an Improved Electrochemical Sensor for Metronidazole Determination. J. Electrochem. Soc. 2019, 166, B1131–B1137. [Google Scholar] [CrossRef]
- Wang, G.; Yayalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wang, P.; Xin, X.; Hu, G. Highly Sensitive Electrochemical Sensor for the Detection of Chloramphenicol Based on Biomass Derived Porous Carbon. Sci. Adv. Mater. 2020, 12, 376–382. [Google Scholar] [CrossRef]
- Mandke, M.V.; Han, S.-H.; Pathan, H.M. Growth of silver dendritic nanostructuresvia electrochemical route. CrystEngComm 2012, 14, 86–89. [Google Scholar] [CrossRef]
- Qin, X.; Liu, L.; Xu, A.; Wang, L.; Tan, Y.; Chen, C.; Xie, Q. Ultrasensitive Immunoassay of Proteins Based on Gold Label/Silver Staining, Galvanic Replacement Reaction Enlargement, and In Situ Microliter-Droplet Anodic Stripping Voltammetry. J. Phys. Chem. C 2016, 120, 2855–2865. [Google Scholar] [CrossRef]
- Ivanova, O.S.; Zamborini, F.P. Size-Dependent Electrochemical Oxidation of Silver Nanoparticles. J. Am. Chem. Soc. 2010, 132, 70–72. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Kulyk, B.; Pereira, S.O.; Fernandes, A.J.S.; Fortunato, E.; Costa, F.M.; Santos, N.F. Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon 2022, 197, 253–263. [Google Scholar] [CrossRef]
- Ben-Shachar, R.; Chen, Y.; Luo, S.; Hartman, C.; Reed, M.; Nijhout, H.F. The biochemistry of acetaminophen hepatotoxicity and rescue: A mathematical model. Theor. Biol. Med. Model. 2012, 9, 55. [Google Scholar] [CrossRef]
- US Food & Drug Administration. Available online: https://www.fda.gov/consumers/consumer-updates/dont-double-acetaminophen (accessed on 5 May 2023).
- Bhat, S.A.; Rather, M.A.; Pandit, S.A.; Ingole, P.P.; Bhat, M.A. Sensitive electrochemical sensing of acetaminophen and hydroquinone over single-pot synthesized stabilizer free Ag/Ag-oxide-graphene nanocomposites. J. Electrochem. Soc. 2016, 783, 280–287. [Google Scholar] [CrossRef]
- Ipekci, H.H.; Ozcan, M.; Turkyilmaz, B.G.; Uzunoglu, A. Ni/NiO/Ni–B/graphene heterostructure-modified electrodes and their electrochemical activities towards acetaminophen. Anal. Methods 2021, 13, 3187–3195. [Google Scholar] [CrossRef]
- Wei, M.; Lu, W.; Liu, G.; Jiang, Y.; Liu, X.; Bai, L.; Cao, X.; Jia, J.; Wu, H. Ni2P Nanosheets: A High Catalytic Activity Platform for Electrochemical Detection of Acetaminophen. Chin. J. Chem. 2021, 39, 1849–1854. [Google Scholar] [CrossRef]
- Ali, M.; Sharma, S.; Singh, R.; Sharma, K.; Majhi, S.; Guin, D.; Tripathi, C.S.P. Barium Titanate Nanocubes as a Dual Electrochemical Sensor for Detection of Dopamine and Acetaminophen. J. Electrochem. Soc. 2022, 169, 067512. [Google Scholar] [CrossRef]
- Han, H.; Liu, C.; Sha, J.; Wang, Y.; Dong, C.; Li, M.; Jiao, T. Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 2021, 235, 122751. [Google Scholar] [CrossRef]
- Shen, L.; Dong, J.; Wen, B.; Wen, X.; Li, J. Facile Synthesis of Hollow Fe3O4-rGO Nanocomposites for the Electrochemical Detection of Acetaminophen. Nanomaterials 2023, 13, 707. [Google Scholar] [CrossRef]
Sample | Species | Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|---|
Urine 1 | APAP | 200 | 211 ± 27 | 106 ± 14 |
Urine 2 | APAP | 200 | 201 ± 35 | 101 ± 18 |
Urine 3 | APAP | 400 | 392 ± 40 | 98 ± 10 |
Urine 4 | APAP | 300 | 261 ± 39 | 87 ± 13 |
Electrode Material | Sensing Range (μM) | Limit of Detection (μM) | Reference |
---|---|---|---|
ZnCl2-KOH activated kelp carbon | 0.01–20 | 0.004 | [2] |
hollow nanoporous carbon polyhedrons embedded with Co/Co3O4 nanoparticles | 0.025−50 | 0.0083 | [18] |
N, P-doped hollow mesoporous carbon nanospheres | 5–1200 | 0.02 | [19] |
Bismuth oxide nanostructures | 0.5–1250 | 0.03 | [20] |
Ag/Ag-oxide-graphene | 9.9–64.9 | 0.022 | [31] |
Ni/NiO/Ni–B/graphene heterostructure | 10–2500 | 14 | [32] |
Ni2P nanosheets | 0.5–4500 | 0.107 | [33] |
Barium titanate nanocubes | 10–100 | 0.23 | [34] |
Ferrocene-reduced graphene oxide-polyoxometalates nanocomposites | 1–1000 | 0.013 | [35] |
Hollow Fe3O4-rGO nanocomposites | 0.5–500 | 0.11 | [36] |
Ag/NSP–PC | 0.061–500 | 0.033 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamat, X.; Aisa, H.A.; Chen, L. Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen. Nanomaterials 2023, 13, 1571. https://doi.org/10.3390/nano13091571
Mamat X, Aisa HA, Chen L. Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen. Nanomaterials. 2023; 13(9):1571. https://doi.org/10.3390/nano13091571
Chicago/Turabian StyleMamat, Xamxikamar, Haji Akber Aisa, and Longyi Chen. 2023. "Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen" Nanomaterials 13, no. 9: 1571. https://doi.org/10.3390/nano13091571
APA StyleMamat, X., Aisa, H. A., & Chen, L. (2023). Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen. Nanomaterials, 13(9), 1571. https://doi.org/10.3390/nano13091571