In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Te NR/rGO Composite
2.2. Structural Characterization
2.3. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials Design for High-Safety Sodium-Ion Battery. Adv. Energy Mater. 2021, 11, 2000974. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Das, P.; Lu, P.; Yu, Y.; Wu, Z.-S. Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Struct. 2020, 1, 2000053. [Google Scholar] [CrossRef]
- Singh, A.N.; Islam, M.; Meena, A.; Faizan, M.; Han, D.; Bathula, C.; Hajibabaei, A.; Anand, R.; Nam, K.-W. Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage. Adv. Funct. Mater. 2023, 33, 2304617. [Google Scholar] [CrossRef]
- Hong, Z.; Maleki, H.; Ludwig, T.; Zhen, Y.; Wilhelm, M.; Lee, D.; Kim, K.-H.; Mathur, S. New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. J. Energy Chem. 2021, 62, 660–691. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, X.; Xu, S.; Gu, M.; Rui, X.; Zhang, X. Chloride-doping, defect and interlayer engineering of copper sulfide for superior sodium-ion batteries. J. Mater. Chem. A 2023, 11, 4102–4110. [Google Scholar] [CrossRef]
- Wasalathilake, K.C.; Li, H.; Xu, L.; Yan, C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J. Energy Chem. 2020, 42, 91–107. [Google Scholar] [CrossRef]
- Peng, B.; Wan, G.; Ahmad, N.; Yu, L.; Ma, X.; Zhang, G. Recent Progress in the Emerging Modification Strategies for Layered Oxide Cathodes toward Practicable Sodium Ion Batteries. Adv. Energy Mater. 2023, 13, 2300334. [Google Scholar] [CrossRef]
- Xu, M.L.; Liu, M.C.; Yang, Z.Z.; Wu, C.; Qian, J.F. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries. Acta Phys. Chim. Sin. 2023, 39, 2210043. [Google Scholar] [CrossRef]
- Gu, Z.-Y.; Heng, Y.-L.; Guo, J.-Z.; Cao, J.-M.; Wang, X.-T.; Zhao, X.-X.; Sun, Z.-H.; Zheng, S.-H.; Liang, H.-J.; Li, B.; et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Res. 2023, 16, 439–448. [Google Scholar] [CrossRef]
- Wu, S.; Lu, X.; Zhang, K.; Xu, J.; Sun, Z. Nitrogen/Phosphorus Dual-Doped Hard Carbon Anode with High Initial Coulombic Efficiency for Superior Sodium Storage. Batter. Supercaps 2023, 6, e202200427. [Google Scholar] [CrossRef]
- He, J.; Tao, T.; Yang, F.; Sun, Z. Revealing the Na+ (de)intercalation mechanism of Na-free polyanionic K3V3(PO4)4·H2O material as a novel anode for advanced sodium-ion batteries. Appl. Surf. Sci. 2023, 610, 155461. [Google Scholar] [CrossRef]
- Peng, Q.; Rehman, J.; Eid, K.; Alofi, A.S.; Laref, A.; Albaqami, M.D.; Alotabi, R.G.; Shibl, M.F. Vanadium Carbide (V4C3) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries. Nanomaterials 2022, 12, 2825. [Google Scholar] [CrossRef]
- Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M.I. Prospects in anode materials for sodium ion batteries—A review. Renew. Sustain. Energy Rev. 2020, 119, 109549. [Google Scholar] [CrossRef]
- Huang, J.; Callender, K.I.E.; Qin, K.; Girgis, M.; Paige, M.; Yang, Z.; Clayborne, A.Z.; Luo, C. Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 40784–40792. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-C.; Ma, C.; Zhang, S.-N.; Wang, L.-Y.; Wang, K.-X.; Chen, J.-S. Polymeric Schiff Base with Thiophene Rings for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 13802–13807. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Edge sites-driven accelerated kinetics in ultrafine Fe2O3 nanocrystals anchored graphene for enhanced alkali metal ion storage. Chem. Eng. J. 2022, 428, 131204. [Google Scholar] [CrossRef]
- Kulka, A.; Hanc, A.; Walczak, K.; Płotek, J.; Sun, J.; Lu, L.; Borca, C.; Huthwelker, T. Direct evidence of an unanticipated crystalline phase responsible for the high performance of few-layered-MoS2 anodes for Na-ion batteries. Energy Storage Mater. 2022, 48, 314–324. [Google Scholar] [CrossRef]
- Mosa, J.; García-García, F.J.; González-Elipe, A.R.; Aparicio, M. New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries. Nanomaterials 2021, 11, 966. [Google Scholar] [CrossRef]
- Tan, H.; Chen, D.; Rui, X.; Yu, Y. Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities. Adv. Funct. Mater. 2019, 29, 1808745. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Li, W.-J.; Chou, S.-L.; Han, C.; Liu, H.-K.; Dou, S.-X. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. J. Mater. Sci. Technol. 2021, 68, 140–146. [Google Scholar] [CrossRef]
- Liu, C.; Fu, X.; Liao, S.; Zou, G.; Yang, H. Interface Engineering Enables High-Performance Sb Anode for Sodium Storage. Nanomaterials 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Ma, M.; Yuan, L.; Qiao, S.; Dong, S.; Liu, H.; Dou, S. Hierarchical Encapsulation and Rich sp2 N Assist Sb2Se3-Based Conversion-Alloying Anode for Long-Life Sodium- and Potassium-Ion Storage. Energy. Environ. Mater. 2023, 6, e12458. [Google Scholar] [CrossRef]
- Yang, H.-R.; Yang, Y.; Seo, H.; Kim, K.; Lee, H.S.; Lee, J.; Kim, J.-H. SnS nanosheets on carbon foam as a flexible anode platform for rechargeable Li- and Na-ion batteries. Appl. Surf. Sci. 2021, 544, 148837. [Google Scholar] [CrossRef]
- Wu, L.; Shao, H.; Yang, C.; Feng, X.; Han, L.; Zhou, Y.; Du, W.; Sun, X.; Xu, Z.; Zhang, X.; et al. SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries. Nanomaterials 2021, 11, 1932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Manaig, D.; Freschi, D.J.; Liu, J. Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries. Energy Storage Mater. 2021, 40, 166–188. [Google Scholar] [CrossRef]
- He, J.; Lv, W.; Chen, Y.; Wen, K.; Xu, C.; Zhang, W.; Li, Y.; Qin, W.; He, W. Tellurium-Impregnated Porous Cobalt-Doped Carbon Polyhedra as Superior Cathodes for Lithium–Tellurium Batteries. ACS Nano 2017, 11, 8144–8152. [Google Scholar] [CrossRef]
- Ding, N.; Chen, S.-F.; Geng, D.-S.; Chien, S.-W.; An, T.; Hor, T.S.A.; Liu, Z.-L.; Yu, S.-H.; Zong, Y. Tellurium@Ordered Macroporous Carbon Composite and Free-Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries. Adv. Energy Mater. 2015, 5, 1401999. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Y.-X.; Guo, Y.-G. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 27838–27844. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Mo, F.; Li, N.; Liang, G.; Li, X.; Huang, Z.; Wang, D.; Huang, W.; Fan, J.; et al. Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Adv. Mater. 2020, 32, 2001469. [Google Scholar] [CrossRef]
- Luo, H.; Kaneti, Y.V.; Ai, Y.; Wu, Y.; Wei, F.; Fu, J.; Cheng, J.; Jing, C.; Yuliarto, B.; Eguchi, M.; et al. Nanoarchitectured Porous Conducting Polymers: From Controlled Synthesis to Advanced Applications. Adv. Mater. 2021, 33, 2007318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bai, M.; Du, D.; Tang, X.; Wang, H.; Zhang, M.; Zhao, T.; Liu, F.; Wang, Z.; Ma, Y. Affinity-Engineered Flexible Scaffold toward Energy-Dense, Highly Reversible Na Metal Batteries. Energy Environ. Mater. 2023, 6, e12350. [Google Scholar] [CrossRef]
- Lv, C.; Tong, Z.; Wu, Z.-P.; Gao, F.; Zhou, S.-Y.; Pan, S.-Y.; Zhang, P.-F.; Zhou, Z.-H.; Liao, H.-G.; Zhou, Y.; et al. Disposing of excessive decomposition and destructive intercalation of solvated Li+ in CNT-based flexible 3D Si anode of flexible battery. Energy Storage Mater. 2022, 51, 361–371. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Hu, X.; Yuan, J.; Zhong, G.; Zhang, L.; Chen, J.; Zhan, H.; Wen, Z. CeO2 quantum-dots engineering 3D carbon architectures toward dendrite-free Na anode and reversible Te cathode for high-performance Na-Te batteries. InfoMat 2022, 4, e12343. [Google Scholar] [CrossRef]
- Liang, H.-J.; Gu, Z.-Y.; Zhao, X.-X.; Guo, J.-Z.; Yang, J.-L.; Li, W.-H.; Li, B.; Liu, Z.-M.; Sun, Z.-H.; Zhang, J.-P.; et al. Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 2022, 67, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, T.; Wu, C.; Huang, Y.; Strasser, P. A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries. J. Appl. Electrochem. 2018, 48, 1265–1271. [Google Scholar] [CrossRef]
- Wang, H.; Tong, Z.; Yang, R.; Huang, Z.; Shen, D.; Jiao, T.; Cui, X.; Zhang, W.; Jiang, Y.; Lee, C.-S. Electrochemically Stable Sodium Metal-Tellurium/Carbon Nanorods Batteries. Adv. Energy Mater. 2019, 9, 1903046. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Xu, Q.; Hu, L.; Shen, B.; Liu, H.; Dai, C.; Bao, S.; Xu, M. Nitrogen-Doped Carbon as a Host for Tellurium for High-Rate Li–Te and Na–Te Batteries. ChemSusChem 2019, 12, 1196–1202. [Google Scholar] [CrossRef]
- Hu, H.; Zeng, Y.; Gao, S.; Wang, R.; Zhao, J.; You, K.; Song, Y.; Xiao, Q.; Cao, R.; Li, J.; et al. Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications. J. Mater. Chem. C 2021, 9, 508–516. [Google Scholar] [CrossRef]
- Li, M.; Xiong, Y.; Wei, H.; Yao, F.; Han, Y.; Du, Y.; Xu, D. Flexible Te/PEDOT:PSS thin films with high thermoelectric power factor and their application as flexible temperature sensors. Nanoscale 2023, 15, 11237–11246. [Google Scholar] [CrossRef]
- Huang, D.; Li, S.; Xiao, X.; Cao, M.; Gao, L.; Xiang, Y.-G.; Chen, H.; Shen, Y. Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries. J. Power Sources 2017, 371, 48–54. [Google Scholar] [CrossRef]
- Liu, F.; Meng, J.; Wang, H.; Chen, S.; Yu, R.; Gao, P.; Wu, J. In Situ Atomic-Scale Observation of Electrochemical (De)potassiation in Te Nanowires. Small 2022, 18, 2200844. [Google Scholar] [CrossRef]
- Ge, X.; Yin, L. S-doping induced boosted electrochemical redox kinetics in Te1-xSx nanorod cathodes for high volumetric capacity Li-Te batteries. Energy Storage Mater. 2019, 20, 89–97. [Google Scholar] [CrossRef]
- Ullah, S.; Yasin, G.; Ahmad, A.; Qin, L.; Yuan, Q.; Khan, A.U.; Khan, U.A.; Rahman, A.U.; Slimani, Y. Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 1750–1761. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, W.; Zhao, P.; Aboonasr Shiraz, M.H.; Manaig, D.; Freschi, D.J.; Liu, Y.; Liu, J. A durable lithium–tellurium battery: Effects of carbon pore structure and tellurium content. Carbon 2021, 173, 11–21. [Google Scholar] [CrossRef]
- Kang, S.; Yim, G.; Chae, S.-Y.; Kim, S.; Gil, Y.-G.; Kim, Y.-K.; Min, D.-H.; Jang, H. Rhodium–Tellurium Nanorod Synthesis Using Galvanic Replacement-Polyol Regrowth for Thermo-Dynamic Dual-Modal Cancer Phototherapy. ACS Appl. Mater. Interfaces 2022, 14, 40513–40521. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, Y.; Xu, X.; Lin, Q.; Wang, H.; Xue, Q.; Jian, B.; Guo, Z.; Lv, W. Diglyme-based electrolytes boosting high-rate and stable sodium-ion storage for three-dimensional VS4/Reduced graphene oxide hybrid anodes. J. Power Sources 2022, 526, 231098. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.J.E.L. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Yang, H.; Hwang, J.; Tonouchi, Y.; Matsumoto, K.; Hagiwara, R. Sodium difluorophosphate: Facile synthesis, structure, and electrochemical behavior as an additive for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 3637–3647. [Google Scholar] [CrossRef]
- Xue, F.; Fan, F.; Zhu, Z.; Zhang, Z.; Gu, Y.; Li, Q. MoS2/CoS heterostructures grown on carbon cloth as free-standing anodes for high-performance sodium-ion batteries. Nanoscale 2023, 15, 6822–6829. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.-W.; He, F.; Zhang, J.; Feng, Y.; Zhao, L.; Wang, B.; He, L.; Zhang, Q.; Yu, Y. Optimizing the Void Size of Yolk–Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. Nano Lett. 2020, 20, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-Y.; Gu, Z.-Y.; Ang, E.H.; Guo, J.-Z.; Wang, X.-T.; Wang, Y.; Wu, X.-L. Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and application prospects. Mater. Today 2022, 54, 189–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhong, J.; Jian, B.; Zheng, C.; Zeng, Y.; Kou, C.; Xiao, Q.; Luo, Y.; Wang, H.; Guo, Z.; et al. In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage. Nanomaterials 2024, 14, 118. https://doi.org/10.3390/nano14010118
Hu H, Zhong J, Jian B, Zheng C, Zeng Y, Kou C, Xiao Q, Luo Y, Wang H, Guo Z, et al. In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage. Nanomaterials. 2024; 14(1):118. https://doi.org/10.3390/nano14010118
Chicago/Turabian StyleHu, Haiguo, Jiarui Zhong, Bangquan Jian, Cheng Zheng, Yonghong Zeng, Cuiyun Kou, Quanlan Xiao, Yiyu Luo, Huide Wang, Zhinan Guo, and et al. 2024. "In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage" Nanomaterials 14, no. 1: 118. https://doi.org/10.3390/nano14010118
APA StyleHu, H., Zhong, J., Jian, B., Zheng, C., Zeng, Y., Kou, C., Xiao, Q., Luo, Y., Wang, H., Guo, Z., & Niu, L. (2024). In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage. Nanomaterials, 14(1), 118. https://doi.org/10.3390/nano14010118