Enhanced Electrostatic Safety and Thermal Compatibility of Special Powders Based on Surface Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Modified HMX Composites
2.3. Assembly of Home-Made Electrostatic Accumulation Tester
2.4. Characterization Methods
2.5. Computational Methods
3. Results and Discussion
3.1. Morphology and Crystal Structure Characterization
3.2. Thermal Behavior
3.3. Electrostatic Accumulation Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krebs, Z.J.; Behn, W.A.; Li, S.; Smith, K.J.; Watanabe, K.; Taniguchi, T.; Levchenko, A.; Brar, V.W. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Science 2023, 379, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Cao, W.; Raab, N.; Watanabe, K.; Taniguchi, T.; Goldstein, M.; Kronik, L.; Urbakh, M.; Hod, O.; Ben, S.M. Cumulative polarization in conductive interfacial ferroelectrics. Nature 2022, 612, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Pace, G.T.; Le, M.L.; Clément, R.J.; Segalman, R.A. A coacervate-based mixed-conducting binder for high-power, high-energy batteries. ACS Energy Lett. 2023, 8, 2781–2788. [Google Scholar] [CrossRef]
- Egan, S. Learning lessons from five electrostatic incidents. J. Electrostat. 2017, 88, 183–189. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Yu, J.; Zhou, W.; Zhao, S.; Xu, S.; Zhao, F. Size, Morphology and Crystallinity Control Strategy of Ultrafine HMX by Microfluidic Platform. Nanomaterials 2023, 13, 464. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Bai, C.; Sun, L.; Li, W.; Zeng, J.; Li, C.; Yao, J. Study on the electrostatic field distribution in a typical propellant production process. J. Electrostat. 2021, 113, 103617. [Google Scholar] [CrossRef]
- Jin, M.; Song, Z.; Liu, W.; Wang, G.; Xian, M. Biofunctionalization of HMX with Peptides via Polydopamine Crosslinking for Assembling an HMX@Al@CuO Nanoenergetic Composite. Nanomaterials 2023, 13, 1837. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.Y.; Lim, E.T.S.; Ao, C.K.; Jiang, Y.; Wong, S.; Soh, S. Customizable non-charging material for eliminating electrostatic charge of particles at source. Chem. Eng. J. 2023, 468, 143496. [Google Scholar] [CrossRef]
- Lotfzadeh, H.; Khorasanloo, F.H.; Fathollahi, M. Reduction of electrostatic charging PETN and HMX explosives by PVP and ionic liquid. J. Electrostat. 2020, 108, 103513. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Sharifnezhad, H.; Fathollahi, M.; Abotorabe, A.; Ghaenii, H.R. Improvement of electrostatic discharge sensitivity of lead styphnate particles using some polymer coating agents. J. Energ. Mater. 2021, 41, 1–12. [Google Scholar] [CrossRef]
- Goudarzi, M.; Mahyari, M.; Fathollahi, M.; Hosseini, S.G. Deep eutectic solvents as sustainable antistatic coating agent for cyclotetramethylenetetranitramine to reduce charge-accumulations. J. Electrost. 2020, 108, 103519. [Google Scholar] [CrossRef]
- Emmerich, T.; Vasu, K.S.; Niguès, A.; Keerthi, A.; Radha, B.; Siria, A.; Bocquet, L. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 2022, 21, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M.; Zhou, M.R.; Zhang, T.L.; Zhang, J.G.; Yang, L.; Zhou, Z.N. The facile synthesis of graphene nanoplatelet-lead styphnate composites and their depressed electrostatic hazards. J. Mater. Chem. 2013, 1, 12710. [Google Scholar] [CrossRef]
- Lv, J.; Wu, Q.; Zhou, Z.P.; Zhang, L.B.; Chen, Z.Y.; Cao, H.Z.; Zheng, W.F.; Tan, L.H. Bionic functional layer strategy to construct synergistic effect-based high-safety CL-20@PDA@GO core-shell-shell structural composites. J. Alloys Compd. 2022, 924, 166494. [Google Scholar] [CrossRef]
- Wang, S.; An, C.; Wang, J.; Ye, B. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials. Nanoscale Res. Lett. 2018, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Muguet, I.; Maziz, A.; Mathieu, F.; Mazenq, L.; Larrieu, G. Combining PEDOT: PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications. Adv. Mater. 2023, 35, 2302472. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Das, P.; Wu, Z.S.; Liu, T.G.; Zhang, X. Aqueous Organic Batteries Using the Proton as a Charge Carrier. Adv. Mater. 2023, 35, 2302199. [Google Scholar] [CrossRef]
- Lee, D.; Kim, S.G.; Kim, J.; Kim, N.; Ryu, K.-H.; Kim, D.-Y.; Kim, N.D.; Hwang, J.Y.; Piao, Y.; An, S.; et al. Highly conductive and mechanically strong metal-free carbon nanotube composite fibers with self-doped polyaniline. Carbon 2023, 213, 118308. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Du, Y. Highly efficient and wearable thermoelectric composites based on carbon nanotube film/polyaniline. J. Mater. 2023, in press. [CrossRef]
- Wang, C.; Liao, Y.; Yu, H.Y.; Dong, Y.; Yao, J. Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications. Carbohydr. Polym. 2023, 319, 121175. [Google Scholar]
- Sharma, S.; Chhetry, A.; Maharjan, P.; Zhang, S.; Shrestha, K.; Sharifuzzaman, M.; Bhatta, T.; Shin, Y.; Kim, D.; Lee, S.; et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022, 95, 106970. [Google Scholar] [CrossRef]
- Yun, G.; Koo, K.M.; Kim, Y. Chemiresistor type formaldehyde sensor using polystyrene/polyaniline core-shell microparticles. Polymer 2021, 215, 123389. [Google Scholar] [CrossRef]
- Shao, L.; Qiu, J.; Liu, M.; Feng, H.; Zhang, G.; Qin, L. Preparation and characterization of fly ashes and polyaniline core/shell microspheres. Synth. Met. 2010, 160, 143–149. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Z.; Jia, Q.; Liu, N.; Zhang, J.; Kou, K. Fabrication and characterization of surface modified HMX@PANI core-shell composites with enhanced thermal properties and desensitization via in situ polymerization. Appl. Surf. Sci. 2020, 515, 146042. [Google Scholar] [CrossRef]
- Goetz, V.; Gibot, P.; Spitzer, D. Spark sensitivity and light signature mitigation of an Al/SnO2 nanothermite by the controlled addition of a conductive polymer. Chem. Eng. J. 2022, 427, 131611. [Google Scholar] [CrossRef]
- Wei, X.S.; Huang, W.; Liu, Y.J.; Tang, Y.X. Morphology constraint of β-HMX in polymeric carbon nitrides towards hybrid energetic materials. Chem. Eng. J. 2023, 452, 138981. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Hao, S.; Zhang, S.; Gou, R.; Li, H.; Liu, Y.; Zhou, X. Membrane-cooling coupled crystallization with zero solvent discharge for spherical HMX: Process design, growth kinetics and mechanism. Chem. Eng. J. 2023, 472, 144886. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; von Rague Schleyer, P. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09W, Revision A. 02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Shah, B.A.; Sardar, A.; Peng, W.; Din, S.T.U.; Hamayoun, S.; Li, S.; Yuan, B. Photoresponsive CuS@polyaniline nanocomposites: An excellent synthetic bactericide against several multidrug-resistant pathogenic strains. Inorg. Chem. Front. 2023, 10, 6339–6356. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yang, S.L.; Xue, Z.H.; Chen, S.W.; Yan, Q.L. Multi-scale modified nitramine crystals with conjugated structure intercalation and thin-layer catalyst coating for well-controlled energy release rate. Chem. Eng. J. 2022, 448, 137730. [Google Scholar] [CrossRef]
- Zhang, S.J.; Gao, Z.G.; Jia, Q.; Liu, N.; Yao, J.Y.; Zhang, J.Q.; Kou, K.C. Bioinspired Strategy for HMX@hBNNS Dual Shell Energetic Composites with Enhanced Desensitization and Improved Thermal Property. Adv. Mater. Interfaces 2020, 7, 2001054. [Google Scholar] [CrossRef]
- Rajasekaran, R.; Kumar Ojha, A.; Sundeep Seesala, V.; Kunwar Hansda, A.; Dogra, N.; Lakshmi Parimi, J.; Roy, S.; Goswami, R.; Banerjee, M.; Dhara, S. Polyaniline doped silk fibroin-PCL Electrospunfiber: An electroactive fibrous sheet for full-thickness wound healing study. Chem. Eng. J. 2023, 475, 146245. [Google Scholar] [CrossRef]
- Mao, C.; Qu, Y.; Wang, J.; Xu, R.; Huang, J.; Yin, H.-M. Strengthening and toughening energetic polymer composites via assembly of metal-phenolic network. Compos. Sci. Technol. 2022, 226, 109546. [Google Scholar] [CrossRef]
- Salem, M.A.S.; Khan, A.M.; Manea, Y.K.; Qashqoosh, M.T.A.; Alahdal, F.A.M. Highly efficient iodine capture and ultrafast fluorescent detection of heavy metals using PANI/LDH@CNT nanocomposite. J. Hazard. Mater. 2023, 447, 130732. [Google Scholar] [CrossRef] [PubMed]
- Jarrahi, Z.; Farzi, G.; Fischer, A. Synthesis of Polyaniline/Cadmium Sulfide Hybrid Nanocomposites via a One-Pot Process: Morphology Control for Improvement of Photovoltaic Performance. ACS Appl. Electron. Mater. 2023, 5, 1156–1163. [Google Scholar] [CrossRef]
- Rohith, R.; Thejas, P.A.; Manju, V.; Mohan, R.R.; Sreekanth, J.V. Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes. Chem. Eng. J. 2023, 467, 143499. [Google Scholar] [CrossRef]
- Lin, C.; Nie, S.; He, G.; Ding, L.; Wen, Y.; Zhang, J.; Yang, Z.; Liu, J.; Liu, S.; Li, J.; et al. Construction of efficient thermally conductive networks with macroscopic separated architectures for polymer based energetic composites. Compos. Part B Eng. 2020, 203, 108447. [Google Scholar] [CrossRef]
- Singh, S.; Perween, S.; Ranjan, A. Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J. Environ. Chem. Eng. 2021, 9, 105149. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, H.; Shi, Y.; Yu, X.; Lan, G. Preparation and Gas Sensing Properties of PANI/SnO2 Hybrid Material. Polymers 2021, 13, 1360. [Google Scholar] [CrossRef] [PubMed]
- Turkten, N.; Karatas, Y.; Uyguner-Demirel, C.S.; Bekbolet, M. Preparation of PANI modified TiO2 and characterization under pre-and post-photocatalytic conditions. Environ. Sci. Pollut. Res. 2023, 30, 111182. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ding, L.; Wu, P.; Liu, Y.; Nie, F.; Huang, F. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity. Chem. Eng. J. 2015, 268, 60–66. [Google Scholar] [CrossRef]
- Zhang, H.-R.; Xue, Z.-H.; Fu, X.; Liu, J.-P.; Qi, X.; Yan, Q.-L. Detailed high temperature pyrolysis mechanisms of stabilized hybrid HMX crystals by intercalation of 2D energetic polymer. Fuel 2022, 324, 124646. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Phan, D.N.; Nguyen, D.C.; Do, V.T.; Bach, L.G. The Chemical Compatibility and Adhesion of Energetic Materials with Several Polymers and Binders: An Experimental Study. Polymers 2018, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Touidjine, S.; Boulkadid, M.K.; Trache, D.; Belkhiri, S.; Mezroua, A.; Fertassi, M.A. Understanding the compatibility of Nitrocellulose with Polyester based Polyurethane binder. J. Energ. Mater. 2021, 41, 192–211. [Google Scholar] [CrossRef]
- Zhou, L.; Su, Z.; Wang, J.; Cai, Y.; Ding, N.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Appl. Catal. B 2024, 341, 123290. [Google Scholar] [CrossRef]
- Maity, D.; Fussenegger, M. An Efficient Ambient-Moisture-Driven Wearable Electrical Power Generator. Adv. Sci. 2023, 10, 2300750. [Google Scholar] [CrossRef]
- Lin, H.; Song, L.; Huang, Y.; Cheng, Q.; Yang, Y.; Guo, Z.; Su, F.; Chen, T. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches. ACS Appl. Mater. Interfaces 2020, 12, 11296–11304. [Google Scholar] [CrossRef]
ΔE (kJ/mol) | ΔG (kJ/mol) | ΔH (kJ/mol) | |
---|---|---|---|
Complex 1 | −68.5 | −16.9 | −67.1 |
Complex 2 | −68.5 | −16.9 | −67.2 |
Complex 3 | −66.3 | −12.2 | −64.9 |
Complex 4 | 71.5 | −15.1 | −70.4 |
Complex 5 | −68.5 | −16.9 | −67.1 |
Complex 6 | −72.4 | −14.7 | −71.9 |
Complex 7 | −68.4 | −8.6 | −69.9 |
Complex 8 | −59.0 | −9.2 | −56.4 |
Complex 9 | −49.2 | 0.9 | −47.2 |
Complex 10 | −71.5 | −15.1 | −70.4 |
Stronger Hydrogen Bonds | Strong Hydrogen Bonds | Weak Hydrogen | ||||
---|---|---|---|---|---|---|
N-H…O | C-H…O | N-H…O | N-H…O | C-H…O | N-H…O | |
Complex 1 | 0 | 0 | 3 | 0 | 0 | 1 |
Complex 2 | 0 | 0 | 3 | 0 | 1 | 1 |
Complex 3 | 1 | 0 | 1 | 2 | 0 | 1 |
Complex 4 | 0 | 0 | 2 | 2 | 2 | 1 |
Complex 5 | 0 | 0 | 3 | 0 | 0 | 1 |
Complex 6 | 2 | 0 | 1 | 2 | 1 | 1 |
Complex 7 | 0 | 0 | 2 | 1 | 2 | 1 |
Complex 8 | 0 | 0 | 0 | 2 | 2 | 0 |
Complex 9 | 0 | 0 | 2 | 1 | 0 | 2 |
Complex 10 | 0 | 0 | 2 | 2 | 2 | 1 |
EHOMO (eV) | ELUMO (eV) | GAP (eV) | |
---|---|---|---|
ANI | −6.48 | 1.34 | 7.83 |
HMX | −10.07 | −1.06 | 9.00 |
Complex 1 | −7.55 | −0.95 | 6.60 |
Complex 2 | −7.55 | −0.95 | 6.60 |
Complex 3 | −7.49 | −0.91 | 6.58 |
Complex 4 | −7.24 | −0.88 | 6.36 |
Complex 5 | −7.55 | −0.95 | 6.60 |
Complex 6 | −7.11 | −1.05 | 6.06 |
Complex 7 | −7.46 | −0.98 | 6.48 |
Complex 8 | −7.64 | −0.84 | 6.80 |
Complex 9 | −7.37 | −1.03 | 6.34 |
Complex 10 | −7.24 | −0.88 | 6.35 |
Raw HMX | HMX@PANI Composites | |
---|---|---|
1 | −6500 | 11 |
2 | −6820 | 24 |
3 | −6170 | 87 |
4 | −6670 | 39 |
5 | −6890 | 8 |
6 | −6720 | 35 |
7 | −6430 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Zhang, L.; Guan, J.; Lv, J.; Xie, Y.; Yang, H.; Tan, L. Enhanced Electrostatic Safety and Thermal Compatibility of Special Powders Based on Surface Modification. Nanomaterials 2024, 14, 126. https://doi.org/10.3390/nano14010126
Pan X, Zhang L, Guan J, Lv J, Xie Y, Yang H, Tan L. Enhanced Electrostatic Safety and Thermal Compatibility of Special Powders Based on Surface Modification. Nanomaterials. 2024; 14(1):126. https://doi.org/10.3390/nano14010126
Chicago/Turabian StylePan, Xuchao, Libo Zhang, Jialu Guan, Jing Lv, Yifei Xie, Haifeng Yang, and Linghua Tan. 2024. "Enhanced Electrostatic Safety and Thermal Compatibility of Special Powders Based on Surface Modification" Nanomaterials 14, no. 1: 126. https://doi.org/10.3390/nano14010126
APA StylePan, X., Zhang, L., Guan, J., Lv, J., Xie, Y., Yang, H., & Tan, L. (2024). Enhanced Electrostatic Safety and Thermal Compatibility of Special Powders Based on Surface Modification. Nanomaterials, 14(1), 126. https://doi.org/10.3390/nano14010126