Effects of Synthesis Conditions of Na0.44MnO2 Precursor on the Electrochemical Performance of Reduced Li2MnO3 Cathode Materials for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Material Synthesis
2.2. Materials Characterization
2.3. Electrochemical Tests
3. Results and Discussion
3.1. Effects of Molten Salt Reaction Temperature
3.2. Effects of Molten Salt Contents
3.3. Growth Mechanism of Na0.44MnO2 Nanobelts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Okonkwo, E.G.; Huang, G.Y.; Xu, S.M.; Sun, W.; He, Y.H. On the sustainability of lithium ion battery industry—A review and perspective. Energy Storage Mater. 2021, 36, 186–212. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of lithium-ion batteries-current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Ding, D.; Li, Z.; Yu, S.; Yang, B.; Yin, Y.; Zan, L.; Myung, N.S. Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation. Sci. Total Environ. 2022, 824, 153790. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhou, W.; Li, X.; Li, Q.; Carabineiro, S.A.C.; Fan, J.; Lv, K. Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitridenanosheets for efficient visible-light-driven photocatalytic NO removal. J. Hazard. Mater. 2022, 442, 130040. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.S.; Zeng, G.B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.Y.; Koettgen, J.; Sun, Y.Z.; Ouyang, B.; Chen, T.N.; et al. Promises and challenges of next-generation “Beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tubke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y.M.; Yoon, W.S. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem.-Int. Ed. 2020, 59, 2578–2605. [Google Scholar] [CrossRef]
- Nayak, P.K.; Erickson, E.M.; Schipper, F.; Penki, T.R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702397. [Google Scholar] [CrossRef]
- Hu, S.J.; Pillai, A.S.; Liang, G.M.; Pang, W.K.; Wang, H.Q.; Li, Q.Y.; Guo, Z.P. Li-rich layered oxides and their practical challenges: Recent progress and perspectives. Electrochem. Energy Rev. 2019, 2, 277–311. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Guo, Z.Q.; Yan, K.; Wan, S.W.; He, F.R.; Sun, B.; Wang, G.X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716–734. [Google Scholar] [CrossRef]
- Yin, C.; Wei, Z.N.; Zhang, M.H.; Qiu, B.; Zhou, Y.H.; Xiao, Y.G.; Zhou, D.; Yun, L.; Li, C.; Gu, Q.W.; et al. Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Mater. Today 2021, 51, 15–26. [Google Scholar] [CrossRef]
- Mabokela, T.E.; Nwanya, A.C.; Ndipingwi, M.M.; Kaba, S.; Ekwere, P.; Werry, S.T.; Ikpo, C.O.; Modibane, K.D.; Iwuoha, E.I. Review—Recent advances on high-capacity Li-rich layered manganese oxide cathodes. J. Electrochem. Soc. 2021, 168, 070530. [Google Scholar] [CrossRef]
- Tran, N.; Croguennec, L.; Menetrier, M.; Weill, F.; Biensan, P.; Jordy, C.; Delmas, C. Mechanisms associated with the “Plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem. Mater. 2008, 20, 4815–4825. [Google Scholar] [CrossRef]
- Phillips, P.J.; Bareno, J.; Li, Y.; Abraham, D.P.; Klie, R.F. On the localized nature of the structural transformations of Li2MnO3 following electrochemical cycling. Adv. Energy Mater. 2015, 5, 1501252. [Google Scholar] [CrossRef]
- Oishi, M.; Yamanaka, K.; Watanabe, I.; Shimoda, K.; Matsunaga, T.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z.; Ohta, T. Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 2016, 4, 9293–9302. [Google Scholar] [CrossRef]
- Chen, H.R.; Islam, M.S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 2016, 28, 6656–6663. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Y.N.; Gao, Y.R.; Kong, Q.Y.; Wang, Z.X.; Yang, X.Q.; Chen, L.Q. Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Chem. A Eur. J. 2014, 20, 8723–8730. [Google Scholar] [CrossRef]
- Dong, X.; Xu, Y.L.; Xiong, L.L.; Sun, X.F.; Zhang, Z.W. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J. Power Sources 2013, 243, 78–87. [Google Scholar] [CrossRef]
- Gao, Y.R.; Wang, X.F.; Ma, J.; Wang, Z.X.; Chen, L.Q. Selecting substituent elements for Li-rich Mn-based cathode materials by Density Functional Theory (DFT) Calculations. Chem. Mater. 2015, 27, 3456–3461. [Google Scholar] [CrossRef]
- He, H.B.; Cong, H.J.; Sun, Y.; Zan, L.; Zhang, Y.X. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries. Nano Res. 2017, 10, 556–569. [Google Scholar] [CrossRef]
- Wu, F.; Li, N.; Su, Y.F.; Zhan, L.J.; Bao, L.Y.; Wang, J.; Chen, L.; Zheng, Y.; Dai, L.Q.; Peng, J.Y.; et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014, 14, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, C.Y.; Yin, G.P.; Song, B.; Zuo, P.J.; Cheng, X.Q.; Maa, Y.L.; Gao, Y.Z. An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2014, 2, 15640–15646. [Google Scholar] [CrossRef]
- Kubota, K.; Kaneko, T.; Hirayama, M.; Yonemura, M.; Imanari, Y.; Nakane, K.; Kanno, R. Direct synthesis of oxygen-deficient Li2MnO3-x for high capacity lithium battery electrodes. J. Power Sources 2012, 216, 249–255. [Google Scholar] [CrossRef]
- Sun, Y.; Cong, H.J.; Zang, L.; Zhang, Y.X. Oxygen vacancies and stacking faults introduced by low-temperature reduction improve the electrochemical properties of Li2MnO3 nanobelts as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 2017, 9, 38545–38555. [Google Scholar] [CrossRef]
- Sun, Y.; Zan, L.; Zhang, Y.X. Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Appl. Surf. Sci. 2019, 483, 270–277. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, M.H.; Shu, S.W.; Ding, D.; Wang, C.L.; Zhang, Y.X.; Yan, J.T. Preparation of Li2MnO3 nanowires with structural defects as high rate and high capacity cathodes for lithium-ion batteries. Appl. Surf. Sci. 2022, 585, 152605. [Google Scholar] [CrossRef]
- Wang, C.C.; Jarvis, K.A.; Ferreira, P.J.; Manthiram, A. Effects of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes. Chem. Mater. 2013, 25, 3267–3275. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xie, K. Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes. J. Phys. Chem. C 2014, 118, 11505–11511. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; He, P.; Hosono, E.; Zhou, H. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.X.; Li, X.H.; Chen, J.S. Surface and interface engineering of electrode materials for lithium-on batteries. Adv. Mater. 2015, 27, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C.K.; Peng, H.; Huggins, R.A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2010, 10, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, S.; Du, Y. Synthesis, characterization, and exchange bias effect in single crystalline Li0.44MnO2 nanoribbons. J. Phys. Chem. C 2011, 115, 2644–2649. [Google Scholar] [CrossRef]
- Hosono, E.; Matsuda, H.; Saito, T.; Kudo, T.; Ichihara, M.; Honma, I.; Zhou, H. Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. J. Power Sources 2010, 195, 7098–7101. [Google Scholar] [CrossRef]
- Yang, J.R.; Weng, W.; Xiao, W. Electrochemical synthesis of ammonia in molten salts. J. Energy Chem. 2020, 43, 195–207. [Google Scholar] [CrossRef]
- Tan, W.D.; Guo, X.S.; She, Y.M.; Li, H.S.; Lei, Y.; You, J.G.; Zhang, X.F.; Luo, X.D. Effects of molten salt temperature and holding time on synthesis of hercynite by molten salt method. Ceram. Int. 2022, 48, 11555–11560. [Google Scholar] [CrossRef]
- Lee, J.S. Preparation of EuAlO3 powders by molten salt method. J. Ceram. Process. Res. 2017, 18, 385–388. [Google Scholar]
- Zhang, X.; Tang, S.; Du, Y. Controlled synthesis of single-crystalline Li0.44MnO2 and Li2MnO3. Mater. Res. Bull. 2012, 47, 1636–1640. [Google Scholar] [CrossRef]
- Zhao, N.N.; Li, Y.S.; Zhao, X.X.; Zhi, X.K.; Liang, G.C. Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J. Alloys Compd. 2016, 683, 123–132. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Kang, S.H.; Johnson, C.S.; Vaughey, J.T.; Benedek, R.; Hackney, S.A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, J.; Yu, X.; Yan, P.; Zheng, J.; Engelhard, M.; Zhang, J.G. Effects of structural defects on the electrochemical activation of Li2MnO3. Nano Energy 2015, 16, 143–151. [Google Scholar] [CrossRef]
- Hwang, I.; Lee, C.W.; Kim, J.C.; Yoon, S. Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater. Res. Bull. 2012, 47, 73–78. [Google Scholar] [CrossRef]
- Drezen, T.; Kwon, N.H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power Sources 2007, 174, 949–953. [Google Scholar] [CrossRef]
- Chu, Q.X.; Wang, X.F.; Li, B.X.; Jin, H.; Cao, X.J.; Zhao, X.D.; Liu, X.Y. Flux synthesis and growth mechanism of Na0.5MnO2 whiskers. J. Cryst. Growth 2011, 322, 103–108. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem. A Eur. J. 2003, 9, 5627–5635. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Wu, Y.Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Res. 2009, 2, 54–60. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Wang, Z.N.; He, S.N.; Wang, C.Q.; Jin, M.S.; Yin, Y.D. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 2015, 6, 5197–5203. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.J.J.; Korinek, A.; Dong, C.H.; van Veggel, F. Self-focusing by Ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068–11071. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Cheng, J.; Tu, Z.; Chen, M.; Huang, Q.; Wang, C.; Yan, J. Effects of Synthesis Conditions of Na0.44MnO2 Precursor on the Electrochemical Performance of Reduced Li2MnO3 Cathode Materials for Lithium-Ion Batteries. Nanomaterials 2024, 14, 17. https://doi.org/10.3390/nano14010017
Sun Y, Cheng J, Tu Z, Chen M, Huang Q, Wang C, Yan J. Effects of Synthesis Conditions of Na0.44MnO2 Precursor on the Electrochemical Performance of Reduced Li2MnO3 Cathode Materials for Lithium-Ion Batteries. Nanomaterials. 2024; 14(1):17. https://doi.org/10.3390/nano14010017
Chicago/Turabian StyleSun, Ya, Jialuo Cheng, Zhiqi Tu, Meihe Chen, Qiaoyang Huang, Chunlei Wang, and Juntao Yan. 2024. "Effects of Synthesis Conditions of Na0.44MnO2 Precursor on the Electrochemical Performance of Reduced Li2MnO3 Cathode Materials for Lithium-Ion Batteries" Nanomaterials 14, no. 1: 17. https://doi.org/10.3390/nano14010017
APA StyleSun, Y., Cheng, J., Tu, Z., Chen, M., Huang, Q., Wang, C., & Yan, J. (2024). Effects of Synthesis Conditions of Na0.44MnO2 Precursor on the Electrochemical Performance of Reduced Li2MnO3 Cathode Materials for Lithium-Ion Batteries. Nanomaterials, 14(1), 17. https://doi.org/10.3390/nano14010017