The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choo, H.; Kim, M.-K.; Staffaroni, M.; Seok, T.J.; Bokor, J.; Cabrini, S.; Schuck, P.J.; Wu, M.C.; Yablonovitch, E. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics 2012, 6, 838–844. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.G.; Qin, C.B.; Song, Y.R.; Han, S.P.; Zhang, G.F.; Chen, R.Y.; Hu, J.Y.; Xiao, L.T.; Jia, S.T. Coherent interference fringes of two-photon photoluminescence in individual Au nanoparticles: The critical role of the intermediate state. Phys. Rev. Lett. 2021, 127, 073902. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Chen, Y.L.; Liu, R.S.; Tsai, D.P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef]
- Hu, H.T.; Xu, Y.H.; Hu, Z.W.; Kang, B.W.; Zhang, Z.L.; Sun, J.W.; Li, Y.; Xu, H.X. Nanoparticle-on-mirror pairs: Building blocks for remote spectroscopies. Nanophotonics 2022, 11, 5153–5163. [Google Scholar] [CrossRef]
- Li, G.C.; Lei, D.Y.; Qiu, M.; Jin, W.; Lan, S.; Zayats, A.V. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nat. Commun. 2021, 12, 4326. [Google Scholar] [CrossRef]
- Hoang, T.B.; Akselrod, G.M.; Mikkelsen, M.H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2016, 16, 270–275. [Google Scholar] [CrossRef]
- Wu, Y.M.; Xu, J.H.; Poh, E.T.; Liang, L.L.; Liu, H.L.; Yang, J.K.W.; Qiu, C.W.; Vallée, R.A.L.; Liu, X.G. Upconversion superburst with sub-2 μs lifetime. Nat. Nanotechnol. 2019, 14, 1110–1115. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Z.H.; Hu, H.T.; Kang, B.W.; Zhang, B.B.; Mi, X.H.; Guo, L.; Zhang, C.Y.; Li, J.P.; Lu, J.B.; et al. Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle. Nat. Photonics 2022, 16, 651–657. [Google Scholar] [CrossRef]
- Xomalis, A.; Zheng, X.Z.; Demetriadou, A.; Martínez, A.; Chikkaraddy, R.; Baumberg, J.J. Interfering plasmons in coupled nanoresonators to boost light localization and SERS. Nano Lett. 2021, 21, 2512–2518. [Google Scholar] [CrossRef]
- Chen, W.; Roelli, P.; Hu, H.T.; Verlekar, S.; Amirtharaj, S.P.; Barreda, A.I.; Kippenberg, T.J.; Kovylina, M.; Verhagen, E.; Martínez, A.; et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 2021, 374, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Xomalis, A.; Zheng, X.Z.; Chikkaraddy, R.; Koczor-Benda, Z.; Miele, E.; Rosta, E.; Vandenbosch, G.A.E.; Martínez, A.; Baumberg, J.J. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 2021, 374, 1268–1271. [Google Scholar] [CrossRef] [PubMed]
- Chikkaraddy, R.; Xomalis, A.; Jakob, L.A.; Baumberg, J.J. Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities. Light Sci. Appl. 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Akemann, W.; Otto, A. Continuous secondary light emission from silver films: On the origin of the inelastic background in SERS. Surf. Sci. 1994, 307, 1071–1075. [Google Scholar] [CrossRef]
- Farcau, C.; Astilean, S. Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background. Chem. Commun. 2011, 47, 3861–3863. [Google Scholar] [CrossRef] [PubMed]
- Hugall, J.T.; Baumberg, J.J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: The origin of SERS backgrounds. Nano Lett. 2015, 15, 2600–2604. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Biju, V.; Ishikawa, M.; Kikkawa, Y.; Hashimoto, K.; Ikehata, A.; Ozaki, Y. Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates. J. Chem. Phys. 2006, 124, 134708. [Google Scholar] [CrossRef]
- Mahajan, S.; Cole, R.M.; Speed, J.D.; Pelfrey, S.H.; Russell, A.E.; Bartlett, P.N.; Barnett, S.M.; Baumberg, J.J. Understanding the surface-enhanced Raman spectroscopy “background”. J. Phys. Chem. C 2010, 114, 7242–7250. [Google Scholar] [CrossRef]
- Beversluis, M.R.; Bouhelier, A.; Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 2003, 68, 115433. [Google Scholar] [CrossRef]
- Dulkeith, E.; Niedereichholz, T.; Klar, T.A.; Feldmann, J.; von Plessen, G.; Gittins, D.I.; Mayya, K.S.; Caruso, F. Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 2004, 70, 205424. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, C.; Yu, M.X.; Liu, J.B. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073–4083. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Chikkaraddy, R.; Salmon, A.; Ohadi, H.; de Nijs, B.; Mertens, J.; Carnegie, C.; Bowman, R.W.; Baumberg, J.J. SERS of individual nanoparticles on a mirror: Size does matter, but so does shape. J. Phys. Chem. Lett. 2016, 7, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ma, L.W.; Li, J.H.; Zhang, Z.J. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology 2017, 28, 105203. [Google Scholar] [CrossRef] [PubMed]
- Chikkaraddy, R.; Zheng, X.Z.; Benz, F.; Brooks, L.J.; de Nijs, B.; Carnegie, C.; Kleemann, M.E.; Mertens, J.; Bowman, R.W.; Vandenbosch, G.A.E.; et al. How ultranarrow gap symmetries control plasmonic nanocavity modes: From cubes to spheres in the nanoparticle-on-mirror. ACS Photonics 2017, 4, 469–475. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, L.F.; Zhang, D.; Krasavin, A.V.; Zheng, J.S.; Pan, C.X.Y.; He, E.X.; Wang, Z.F.; Zhong, S.C.A.; Li, Z.Y.; et al. Effect of mirror quality on optical response of nanoparticle-on-mirror plasmonic nanocavities. Adv. Opt. Mater. 2023, 11, 2201914. [Google Scholar] [CrossRef]
- Baumberg, J.J.; Aizpurua, J.; Mikkelsen, M.H.; Smith, D.R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Lassiter, J.B.; McGuire, F.; Mock, J.J.; Ciracì, C.; Hill, R.T.; Wiley, B.J.; Chilkoti, A.; Smith, D.R. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 2013, 13, 5866–5872. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Banjac, K.; Verlekar, S.S.; Cometto, F.P.; Lingenfelder, M.; Galland, C. Structural order of the molecular adlayer impacts the stability of nanoparticle-on-mirror plasmonic cavities. ACS Photonics 2021, 8, 1863–1872. [Google Scholar] [CrossRef]
- Pace, G.; Ferri, V.; Grave, C.; Elbing, M.; von Hänisch, C.; Zharnikov, M.; Mayor, M.; Rampi, M.A.; Samorì, P. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl. Acad. Sci. USA 2007, 104, 9937–9942. [Google Scholar] [CrossRef]
- Anderson, L.J.E.; Mayer, K.M.; Fraleigh, R.D.; Yang, Y.; Lee, S.; Hafner, J.H. Quantitative measurements of individual gold nanoparticle scattering cross sections. J. Phys. Chem. C 2010, 114, 11127–11132. [Google Scholar] [CrossRef]
- Dhumale, V.A.; Shah, P.V.; Sharma, R.B.; Tanabe, K. Effects of particle size and surrounding media on optical radiation efficiencies of spherical plasmonic metal nanoparticles. Bull. Mater. Sci. 2012, 35, 143–149. [Google Scholar] [CrossRef]
- van Dijk, M.A.; Tchebotareva, A.L.; Orrit, M.; Lippitz, M.; Berciaud, S.; Lasne, D.; Cognet, L.; Lounis, B. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 2006, 8, 3486–3495. [Google Scholar] [CrossRef] [PubMed]
- Tserkezis, C.; Esteban, R.; Sigle, D.O.; Mertens, J.; Herrmann, L.O.; Baumberg, J.J.; Aizpurua, J. Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps. Phys. Rev. A 2015, 92, 053811. [Google Scholar] [CrossRef]
- Kim, W.; Kim, N.; Lee, E.; Kim, D.; Kim, Z.H.; Park, J.W. A tunable Au core-Ag shell nanoparticle tip for tip-enhanced spectroscopy. Analyst 2016, 141, 5066–5070. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.X.; Ming, T.; Lin, Y.X.; Ling, X.; Ruan, Q.F.; Palacios, T.; Wang, J.F.; Dresselhaus, M.; Kong, J. Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small 2016, 12, 5190–5199. [Google Scholar] [CrossRef] [PubMed]
- Mertens, J.; Kleemann, M.E.; Chikkaraddy, R.; Narang, P.; Baumberg, J.J. How light is emitted by plasmonic metals. Nano Lett. 2017, 17, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.Y.B.; Schwartz, P.; Scoles, G.; Schreiber, F.; Ulman, A. Structure and growth of 4-methyl-4′-mercaptobiphenyl monolayers on Au(111): A surface diffraction study. Surf. Sci. 2000, 458, 34–52. [Google Scholar] [CrossRef]
- Cintra, S.; Abdelsalam, M.E.; Bartlett, P.N.; Baumberg, J.J.; Kelf, T.A.; Sugawara, Y.; Russell, A.E. Sculpted substrates for SERS. Faraday Discuss. 2006, 132, 191–199. [Google Scholar] [CrossRef]
- Weng, H.M.; Kawazoe, Y.; Dong, J.M. Magneto-optical Kerr effects of half-metallic ferromagnetic transition metal chalcogenides in zinc-blende and wurtzite structures. Phys. Rev. B 2006, 74, 085205. [Google Scholar] [CrossRef]
- McLellan, J.M.; Li, Z.Y.; Siekkinen, A.R.; Xia, Y.N. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 2007, 7, 1013–1017. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.Y.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y.N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [PubMed]
- Bürkle, M.; Viljas, J.K.; Vonlanthen, D.; Mishchenko, A.; Schön, G.; Mayor, M.; Wandlowski, T.; Pauly, F. Conduction mechanisms in biphenyl dithiol single-molecule junctions. Phys. Rev. B 2012, 85, 075417. [Google Scholar] [CrossRef]
- Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bürkle, M.; Li, C.; Pobelov, I.V.; Bagrets, A.; Viljas, J.K.; Pauly, F.; Evers, F.; et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 2010, 10, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.B.; Zhang, X.R.; He, W.J.; Zhang, G.F.; Chen, R.Y.; Gao, Y.; Xiao, L.T.; Jia, S.T. Continuous-wave laser-induced welding and giant photoluminescence enhancement of Au nanospheres. Opt. Express 2019, 27, 2886–2898. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, W.; Yang, M.; Yang, Y.; Hu, J.; Qin, C.; Zhang, G.; Liu, S.; Chen, R.; Xiao, L. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. Nanomaterials 2024, 14, 53. https://doi.org/10.3390/nano14010053
Wang Z, Zhou W, Yang M, Yang Y, Hu J, Qin C, Zhang G, Liu S, Chen R, Xiao L. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. Nanomaterials. 2024; 14(1):53. https://doi.org/10.3390/nano14010053
Chicago/Turabian StyleWang, Zixin, Wenjin Zhou, Min Yang, Yong Yang, Jianyong Hu, Chengbing Qin, Guofeng Zhang, Shaoding Liu, Ruiyun Chen, and Liantuan Xiao. 2024. "The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds" Nanomaterials 14, no. 1: 53. https://doi.org/10.3390/nano14010053
APA StyleWang, Z., Zhou, W., Yang, M., Yang, Y., Hu, J., Qin, C., Zhang, G., Liu, S., Chen, R., & Xiao, L. (2024). The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. Nanomaterials, 14(1), 53. https://doi.org/10.3390/nano14010053