Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not?
Abstract
:1. Introduction
2. Functionalization of Multiwalled Carbon Nanotubes
2.1. Methods of Functionalization
2.2. Surfactants
3. Mechanisms of Increased Mechanical Strength with Nanotubes and the Effects of Functionalization
3.1. Dispersion and Functionalization
(A) | ||||||
Materials Cure Time | Compression Control | Compression Pristine | Compression Functionalized | Concentration Range † | Functional Group or Method of Functionalization ‡ | Ref. |
MWCNTs Cement Paste (silica fume)@14d | ~45 MPa | ~52 MPa | ~75 MPa (no surf) ~72 MPa (with surf) | 0.1% | Nitric/Sulfuric Acid | [35] |
MWCNTs Cement Paste Cure time? | 36 MPa | 13 MPa | 66 MPa 71 MPa 65 MPa 59 MPa | 0.02% of paste 0.03% 0.05% 0.09% | Nitric and Sulfuric Acids | [25] |
MWCNTs Cement Paste@28d | 96.0 MPa | 96.5 MPa 93.8 MPa | 101.1 MPa 100.8 MPa | 0.05% of paste 0.1% | -COOH | [63] |
Long MWCNTs Cement Paste@28d | ~95 MPa | ~115 MPa ~110 MPa ~112 MPa | ~125 MPa ~158 MPa ~120 MPa | 0.1% 0.5% 0.8% | -OH | [10] |
Long MWCNTs Cement Paste@28d | ~95 MPa | ~115 MPa ~110 MPa ~112 MPa | ~130 MPa ~145 MPa ~145 MPa | 0.1% 0.5% 0.8% | -COOH | [10] |
Short MWCNTs Cement Paste@28d | ~95 MPa | ~100 MPa ~115 MPa ~75 MPa | ~90 MPa ~155 MPa ~95 MPa | 0.1% 0.5% 0.8% | -OH | [10] |
Short MWCNTs Cement Paste@28d | ~95 MPa | ~100 MPa ~115 MPa ~75 MPa | ~95 MPa ~135 MPa ~85 MPa | 0.1% 0.5% 0.8% | -COOH | [10] |
MWCNTs Cement Paste@28d | 54.1 MPa | 58.9 MPa 67.9 MPa 64.7 MPa 57.9 MPa 57.6 MPa | 64.1 MPa 66.6 MPa 56.4 MPa 55.3 MPa 53.4 MPa | 0.015% 0.05% 0.1% 0.25% 0.5% | -COOH | [33] |
MWCNTs Cement Paste@28d | 54.1 MPa | 58.9 MPa 67.9 MPa 64.7 MPa 57.9 MPa 57.6 MPa | 64.4 MPa 66.1 MPa 62.1 MPa 57.6 MPa 57.7 MPa | 0.015% 0.05% 0.1% 0.25% 0.5% | -OH | [33] |
MWCNTs Cement Paste Cure? | 48.6 MPa | 50.8 MPa | 54.5 MPa | 0.1% | Nitric/Sulfuric Acid | [68] |
(B) | ||||||
Materials Cure Time | Compression Control | Compression Pristine | Compression Functionalized | Concentration Range † | Functional Group or Method of Functionalization ‡ | Ref. |
MWCNTs Cement Mortar@28d | ~46 MPa | ~51 MPa ~49 MPa ~49 MPa | ~52 MPa ~54 MPa ~50 MPa | 0.05% 0.1% 0.2% | -COOH | [34] |
MWCNTs Cement Mortar@28d | ~46 MPa | ~51 MPa ~49 MPa ~49 MPa | ~53 MPa ~54 MPa ~57 MPa | 0.05% 0.1% 0.2% | Low temperature plasma | [34] |
MWCNTs Cement Mortar@28d | ~37 MPa | ~38 MPa ~38 MPa ~39 MPa ~37 MPa | ~40 MPa ~40 MPa ~41 MPa ~35 MPa | 0.1% 0.2% 0.3% 0.5% | -COOH | [40] |
MWCNTs Cement Mortar@28d | ~37 MPa | ~38 MPa ~38 MPa ~39 MPa ~37 MPa | ~40 MPa ~40 MPa ~40 MPa ~36 MPa | 0.1% 0.2% 0.3% 0.5% | -COOH | [40] |
MWCNTs Cement Mortar@28d | ~37 MPa | ~38 MPa ~38 MPa ~39 MPa ~37 MPa | ~40 MPa ~42 MPa ~42 MPa | 0.1% 0.2% 0.3% 0.5% | -COOH | [40] |
MWCNTs Cement Mortar@28d | ~37 MPa | ~38 MPa ~38 MPa ~39 MPa ~37 MPa | ~40 MPa ~40 MPa ~36 MPa ~33 MPa | 0.1% 0.2% 0.3% 0.5% | -COOH | [40] |
MWCNTs Cement Mortar@28d | 72.1 MPa | 88.8 MPa | 82.1 MPa | 0.05% | -COOH | [69] |
MWCNTs Cement Mortar@28d | 72.1 MPa | 88.8 MPa | 85.3 MPa | 0.05% | -OH | [69] |
MWCNTs Cement Mortar@14d | ~46 MPa | ~50 MPa | ~51 MPa ~50 MPa | 0.15% | -COOH -OH | [22] |
MWCNTs Mortar with 30% fumed sllica@14d | ~59 MPa | ~56 MPa | ~71 MPa ~69 MPa | 0.15% | -COOH -OH | [22] |
MWCNTs Mortar with 30% fumed sllica@14d | ~59 MPa | ~56 MPa | ~71 MPa ~69 MPa | 0.15% | -COOH -OH | [22] |
(A) | ||||||
Materials Cure Time | Flexural Control | Flexural Pristine | Flexural Functionalized | Concentration Range † | Functional Group or Method of Functionalization ‡ | Ref. |
Long MWCNTs Cement Paste@28d | ~8.5 MPa | ~13 MPa ~11.5 MPa ~12.5 MPa | ~9 MPa ~11 MPa ~11 MPa | 0.1% 0.5% 0.8% | -OH | [10] |
Long MWCNTs Cement Paste@28d | ~8.5 MPa | ~13 MPa ~11.5 MPa ~12.5 MPa | ~13 MPa ~12 MPa ~13.5 MPa | 0.1% 0.5% 0.8% | -COOH | [10] |
Short MWCNTs Cement Paste@28d | ~8.5 MPa | ~9 MPa ~10.5 MPa ~9 MPa | ~11 MPa ~15.5 MPa ~8 MPa | 0.1% 0.5% 0.8% | -OH | [10] |
Short MWCNTs Cement Paste@28d | ~8.5 MPa | ~9 MPa ~10.5 MPa ~9 MPa | ~10.5 MPa ~13.5 MPa ~10 MPa | 0.1% 0.5% 0.8% | -COOH | [10] |
MWCNTs Cement Paste (silica fume)@14d | ~4.3 MPa | ~4.8 MPa (with surf) | ~6.5 MPa (no surf) ~5.7 MPa (with surf) | 0.1% of paste | Sulfuric and nitric acid | [35] |
MWCNTs Cement Paste Cure? | 1.5 MPa | 1.6 MPa | 4.7 MPa | 0.1% | Sulfuric and nitric acid | [68] |
MWCNTs Cement Paste@28d | 7.7 MPa | 9.0 MPa 10.3 MPa 9.4 MPa 8.8 MPa 8.3 MPa | 8.7 MPa 9.3 MPa 8.4 MPa 7.1 MPa 6.4 MPa | 0.015% 0.05% 0.1% 0.25% 0.5% | -COOH | [33] |
MWCNTs Cement Paste@28d | 7.7 MPa | 9.0 MPa 10.3 MPa 9.4 MPa 8.8 MPa 8.3 MPa | 8.7 MPa 9.3 MPa 8.8 MPa 8.1 MPa 6.7 MPa | 0.015% 0.05% 0.1% 0.25% 0.5% | -OH | [33] |
(B) | ||||||
Materials Cure Time | Flexural Control | Flexural Pristine | Flexural Functionalized | Concentration Range † | Functional Group or Method of Functionalization ‡ | Ref. |
MWCNTs Cement Mortar@28d | ~7 MPa | ~7.9 MPa ~8.2 MPa ~7.2 MPa | ~8.5 MPa ~9.6 MPa ~9.0 MPa | 0.05% 0.1% 0.2% | -COOH | [34] |
MWCNTs Cement Mortar@28d | ~7 MPa | ~7.9 MPa ~8.2 MPa ~7.2 MPa | ~8.9 MPa ~8.1 MPa ~8.3 MPa | 0.05% 0.1% 0.2% | Low temperature plasma | [34] |
MWCNTs Cement Mortar@28d | 10.3 MPa | 13.3 MPa | 12.1 MPa | 0.05% | -COOH | [69] |
MWCNTs Cement Mortar@28d | 10.3 MPa | 13.3 MPa | 11.6 MPa | 0.05% | -OH | [69] |
MWCNTs Mortar with 30% fumed sllica@14d | ~4.4 MPa | 5.9 MPa | ~6.6 MPa ~6.4 MPa | 0.15% | -COOH -OH | [22] |
Materials Cure Time | Electrical Control | Electrical Pristine | Electrical Functionalized | Concentration Range † | Functional Group or Method of Functionalization ‡ | Ref. |
---|---|---|---|---|---|---|
MWCNTs Cement Paste@28d | ~2.03 × 10−7 S/cm | ~2.54 × 10−7 S/cm ~3.09 × 10−7 S/cm ~3.97 × 10−5 S/cm ~9.02 × 10−4 S/cm | ~4.46 × 10−7 S/cm ~8.15 × 10−7 S/cm ~8.56 × 10–4 S/cm ~5.20 × 10−3 S/cm | 0.05% 0.1% 0.3% 0.5% | -C=O from PVAc -NH from PIn (Admicellar polymerization) | [45] |
MWCNTs Cement Paste@28d | ~1.32 × 10−7 S/cm | ~3.97 × 10−7 S/cm ~3.82 × 10−5 S/cm ~6.94 × 10−4 S/cm | ~8.46 × 10−7 S/cm ~5.96 × 10−4 S/cm ~3.12 × 10−3 S/cm | 0.1% 0.3% 0.5% | -C=O from PVAc -NH from PIn (Grafting polymerization) | [46] |
Short MWCNTs Cement Paste@28d | ~200 Ω·m | ~155 Ω·m ~130 Ω·m ~179 Ω·m | ~162 Ω·m ~117 Ω·m ~190 Ω·m | 0.1% 0.5% 0.8% | -COOH | [48] |
Short MWCNTs Cement Paste@28d | ~200 Ω·m | ~155 Ω·m ~130 Ω·m ~179 Ω·m | ~151 Ω·m ~178 Ω·m ~159 Ω·m | 0.1% 0.5% 0.8% | -OH | [48] |
Long MWCNTs Cement Paste@28d | ~200 Ω·m | ~150 Ω·m ~145 Ω·m ~149 Ω·m | ~140 Ω·m ~100 Ω·m ~90 Ω·m | 0.1% 0.5% 0.8% | -COOH | [48] |
Long MWCNTs Cement Paste@28d | ~200 Ω·m | ~150 Ω·m ~145 Ω·m ~149 Ω·m | ~210 Ω·m ~120 Ω·m ~130 Ω·m | 0.1% 0.5% 0.8% | -OH | [48] |
MWCNTs Cement Paste@30d | - | ~610 ΔR/Ω ~600 ΔR/Ω ~575 ΔR/Ω | ~596 ΔR/Ω - - | 0.1% 0.5% 2.0% | -COOH | [70] |
MWCNTs Cement Paste@28d& 90d | 17.16 Ω·m 401.07 Ω·m | 15.13 Ω·m 291.03 Ω·m | 12.91 Ω·m 207.47 Ω·m | 1% | H2SO4-HNO3 | [49] |
MWCNTs Cement Paste@28d & 90d | 17.16 Ω·m 401.07 Ω·m | 15.13 Ω·m 291.03 Ω·m | 14.14 Ω·m 126.96 Ω·m | 1% | Ozone (O3) | [49] |
MWCNTs Cement Paste@28d & 90d | 17.16 Ω·m 401.07 Ω·m | 15.13 Ω·m 291.03 Ω·m | 14.73 Ω·m 50.35 Ω·m | 1% | O3-NaOH | [49] |
MWCNTs Cement Paste@1d | 3.7 × 106 Ω·m | 3.6 × 106 Ω·m | 3.0 × 106 Ω·m, 15 min 3.3 × 106 Ω·m, 30 min 1.9 × 106 Ω·m, 45 min 1.1 × 106 Ω·m, 60 min | 0.1% | -COOH, Oxidation time | [68] |
3.2. Porosity and Functionalization
3.3. Fracture Resistance, Bridging and Interfacial Bonding with Nanotubes
3.4. Nucleation and Hydration
4. Electrical and Thermal Conductivity of Cementitious Composites with Functionalized and Pristine MWCNTs
5. Conclusions
- (1)
- Both covalently functionalized and bare nanotubes improve the compressive and flexural strength of cement paste and mortar.
- (2)
- Covalent functionalization by oxidation of MWCNTs leads to a greater improvement in mechanical strength. Analyzing the tabulated values supports the superiority of functionalized MWCNTs. The average increase in compressive strength among different research groups for cement paste (Table 1A) is about 14% for pristine and 34% for functionalized. For mortar (Table 1B), the numbers are 11% and 16%. For flexural strength of the paste, pristine MWCNTs yield an average 23% increase compared to 43% for functionalized (Table 2A); for mortar (Table 2B), the results are 28% and 32%.
- (3)
- Greater reduction in porosity, greater increase in dispersity and greater fracture resistance occur with functionalized MWCNTs. These changes align with the improved mechanical properties in cementitious composites.
- (4)
- Data for cement pastes show that composites with functionalized MWCNTs have higher electrical conductivity than those with pristine MWCNTs. The aspect ratio appears to be a critical factor for conductivity, though additional work is needed. The average reduction of tabulated values of resistivity for cement paste is about 35% for pristine MWCNTs and 50% for functionalized.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, T.; Li, Z.X.; Guo, J.; Gong, H.; Gu, C.P. Research progress on CNTs/CNFs-modified cement-based composites. Constr. Build. Mater. 2019, 202, 290–307. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Tolkou, A.K.; Efstathiou, S.; Rahdar, A.; Favvas, E.P.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials in Cementitious Composites: An Update. Molecules 2021, 26, 1430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.F.; Qi, T.Q.; Zhou, W.; Hui, D.; Xiao, C.; Qi, J.Y.; Zheng, Z.H.; Zhao, Z.G. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 2020, 9, 303–322. [Google Scholar] [CrossRef]
- Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaria-Lopez, J.M.; Honorato-Moreno, A.; Zamora-Castro, S.A. Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges. Materials 2019, 12, 3548. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.C.; van Rooyen, A.S.; van Zijl, G.P.A.G.; Petrik, L.F. Properties of cement-based composites using nanoparticles: A comprehensive review. Constr. Build. Mater. 2018, 189, 1019–1034. [Google Scholar] [CrossRef]
- Reches, Y. Nanoparticles as concrete additives: Review and perspectives. Constr. Build. Mater. 2018, 175, 483–495. [Google Scholar] [CrossRef]
- Li, Q.H.; Liu, J.T.; Xu, S.L. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites. Adv. Mater. Sci. Eng. 2015, 2015, 307435. [Google Scholar] [CrossRef]
- Abu Al-Rub, R.K.; Ashour, A.I.; Tyson, B.M. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr. Build. Mater. 2012, 35, 647–655. [Google Scholar] [CrossRef]
- Peng, B.; Locascio, M.; Zapol, P.; Li, S.Y.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 2008, 3, 626–631. [Google Scholar] [CrossRef]
- Cui, X.; Han, B.G.; Zheng, Q.F.; Yu, X.; Dong, S.F.; Zhang, L.Q.; Ou, J.P. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. Part A-Appl. Sci. Manuf. 2017, 103, 131–147. [Google Scholar] [CrossRef]
- Abdulhameed, A.; Abd Wahab, N.Z.; Mohtar, M.N.; Hamidon, M.N.; Shafie, S.; Halin, I.A. Methods and Applications of Electrical Conductivity Enhancement of Materials Using Carbon Nanotubes. J. Electron. Mater. 2021, 50, 3207–3221. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhang, H.; Jia, Z.J.; Cao, R.L.; Xiong, Y.L.; Chen, C.; Zhang, Y.M. Thermal properties of amino-functionalized multi-walled carbon nanotubes reinforced epoxy-based transducers embedded in concrete. Cem. Concr. Comp. 2022, 127, 104411. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Monea, B.F.; Ionete, E.I.; Spiridon, S.I.; Ion-Ebrasu, D.; Petre, E. Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement. Sensors 2019, 19, 2464. [Google Scholar] [CrossRef] [PubMed]
- Rashad, A.M. Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Constr. Build. Mater. 2017, 153, 81–101. [Google Scholar] [CrossRef]
- Zhang, P.; Su, J.; Guo, J.J.; Hu, S.W. Influence of carbon nanotube on properties of concrete: A review. Constr. Build. Mater. 2023, 369, 130388. [Google Scholar] [CrossRef]
- Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr. Build. Mater. 2022, 315, 125100. [Google Scholar] [CrossRef]
- Xu, S.L.; Liu, J.T.; Li, Q.H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Camacho, M.D.; Galao, O.; Baeza, F.J.; Zornoza, E.; Garces, P. Mechanical Properties and Durability of CNT Cement Composites. Materials 2014, 7, 1640–1651. [Google Scholar] [CrossRef]
- Kumar, S.; Kolay, P.; Malla, S.; Mishra, S. Effect of Multiwalled Carbon Nanotubes on Mechanical Strength of Cement Paste. J. Mater. Civil. Eng. 2012, 24, 84–91. [Google Scholar] [CrossRef]
- Naqi, A.; Abbas, N.; Zahra, N.; Hussain, A.; Shabbir, S.Q. Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials. J. Mater. Res. Technol 2019, 8, 1203–1211. [Google Scholar] [CrossRef]
- Tamimi, A.; Hassan, N.M.; Fattah, K.; Talachi, A. Performance of cementitious materials produced by incorporating surface treated multiwall carbon nanotubes and silica fume. Constr. Build. Mater. 2016, 114, 934–945. [Google Scholar] [CrossRef]
- Danoglidis, P.A.; Konsta-Gdoutos, M.S.; Gdoutos, E.E.; Shah, S.P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Constr. Build. Mater. 2016, 120, 265–274. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Nasibulina, L.I.; Anoshkin, I.V.; Nasibulin, A.G.; Cwirzen, A.; Penttala, V.; Kauppinen, E.I. Effect of Carbon Nanotube Aqueous Dispersion Quality on Mechanical Properties of Cement Composite. J. Nanomater. 2012, 2012, 169262. [Google Scholar] [CrossRef]
- Malikov, E.Y. The effect of polyvinyl alcohol functionalized multiwall carbon nanotubes on the improvement of the compressive strength of concrete. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 781–785. [Google Scholar] [CrossRef]
- Yan, X.T.; Cui, H.Z.; Qin, Q.H.; Tang, W.C.; Zhou, X.M. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste. Nanomaterials 2016, 6, 153. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Tyson, B.M.; Abu Al-Rub, R.K.; Yazdanbakhsh, A.; Grasley, Z. Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials. J. Mater. Civil. Eng. 2011, 23, 1028–1035. [Google Scholar] [CrossRef]
- Fakhim, B.; Hassani, A.; Rashidi, A.; Ghodousi, P. Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes. J. Compos. Mater. 2015, 49, 85–98. [Google Scholar] [CrossRef]
- Ahmed, H.; Bogas, J.A.; Guedes, M.; Pereira, M.F.C. Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Mag. Concr. Res. 2019, 71, 408–423. [Google Scholar] [CrossRef]
- Li, S.J.; Zhang, Y.L.; Cheng, C.; Wei, H.; Du, S.G.; Yan, J. Surface-treated carbon nanotubes in cement composites: Dispersion, mechanical properties and microstructure. Constr. Build. Mater. 2021, 310, 125262. [Google Scholar] [CrossRef]
- Kang, S.T.; Seo, J.Y.; Park, S.H. The Characteristics of CNT/Cement Composites with Acid-Treated MWCNTs. Adv. Mater. Sci. Eng. 2015, 2015, 308725. [Google Scholar] [CrossRef]
- Sarvandani, M.M.; Mahdikhani, M.; Aghabarati, H.; Fatmehsari, M.H. Effect of functionalized multi-walled carbon nanotubes on mechanical properties and durability of cement mortars. J. Build. Eng. 2021, 41, 102407. [Google Scholar] [CrossRef]
- Elkashef, M.; Wang, K.; Abou-Zeid, M.N. Acid-treated carbon nanotubes and their effects on mortar strength. Front. Struct. Civ. Eng. 2016, 10, 180–188. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X.H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Manzur, T.; Yazdani, N.; Emon, M.A.B. Effect of Carbon Nanotube Size on Compressive Strengths of Nanotube Reinforced Cementitious Composites. J. Mater. Civil. Eng. 2014, 2014, 960984. [Google Scholar] [CrossRef]
- Manzur, T.; Yazdani, N.; Emon, M.A. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material. J. Nanomater. 2016, 2016, 1421959. [Google Scholar] [CrossRef]
- Sun, G.X.; Liang, R.; Lu, Z.Y.; Zhang, J.R.; Li, Z.J. Mechanism of cement/carbon nanotube composites with enhanced mechanical properties achieved by interfacial strengthening. Constr. Build. Mater. 2016, 115, 87–92. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Hawreen, A.; Bogas, J.A. Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Constr. Build. Mater. 2019, 198, 70–81. [Google Scholar] [CrossRef]
- Yoo, D.Y.; You, I.; Lee, S.J. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors 2017, 17, 1064. [Google Scholar] [CrossRef] [PubMed]
- Onthong, S.; O’Rear, E.A.; Pongprayoon, T. Enhancement of electrically conductive network structure in cementitious composites by polymer hybrid-coated multiwalled carbon nanotube. Mater. Struct. 2022, 55, 232. [Google Scholar] [CrossRef]
- Onthong, S.; O’Rear, E.A.; Pongprayoon, T. Composite nanoarchitectonics by interfacial bonding for conductivity and strength development of grafted multiwall carbon nanotube/cement. Constr. Build. Mater. 2023, 392, 131940. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Comp. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Ruan, Y.F.; Han, B.G.; Wang, D.N.; Zhang, W.; Yu, X. Electrical properties of carbon nanotubes filled cementitious composites. Mater. Res. Express 2018, 5, 105704. [Google Scholar] [CrossRef]
- Del Moral, B.; Gullón, I.M.; Navarro, R.; Galao, O.; Baeza, F.J.; Zornoza, E.; Calderón, B.; Rodríguez, I.; Arnaiz, N.; Sánchez, M.D.R.; et al. The Effect of Different Oxygen Surface Functionalization of Carbon Nanotubes on the Electrical Resistivity and Strain Sensing Function of Cement Pastes. Nanomaterials 2020, 10, 807. [Google Scholar] [CrossRef]
- Dalla, P.T.; Dassios, K.G.; Tragazikis, I.K.; Exarchos, D.A.; Matikas, T.E. Carbon nanotubes and nanofibers as strain and damage sensors for smart cement. Mater. Today Commun. 2016, 8, 196–204. [Google Scholar] [CrossRef]
- Han, B.G.; Zhang, L.Q.; Sun, S.W.; Yu, X.; Dong, X.F.; Wu, T.J.; Ou, J.P. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. Part A-Appl. Sci. Manuf. 2015, 79, 103–115. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 055010. [Google Scholar] [CrossRef]
- Nilsson, F.; Krückel, J.; Schubert, D.W.; Chen, F.; Unge, M.; Gedde, U.W.; Hedenqvist, M.S. Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers. Compos. Sci. Technol. 2016, 132, 16–23. [Google Scholar] [CrossRef]
- Singer, G.; Siedlaczek, P.; Sinn, G.; Rennhofer, H.; Micusík, M.; Omastová, M.; Unterlass, M.M.; Wendrinsky, J.; Milotti, V.; Fedi, F.; et al. Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials 2018, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Seneewong-Na-Ayutthaya, M.; Pongprayoon, T.; O’Rear, E.A. Colloidal Stability in Water of Modified Carbon Nanotube: Comparison of Different Modification Techniques. Macromol. Chem. Phys. 2016, 217, 2635–2646. [Google Scholar] [CrossRef]
- Seneewong-Na-Ayutthaya, M.; Pongprayoon, T. Water-dispersible carbon nanotube prepared by non-destructive functionalization technique of admicellar polymerization. Diam. Relat. Mater. 2015, 60, 111–116. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Tiecco, M.; Meoni, A.; Ubertini, F. Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion. Cem. Concr. Comp. 2021, 115, 103842. [Google Scholar] [CrossRef]
- Luo, J.L.; Duan, Z.D.; Li, H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Status Solidi A-Appl. Mater. Sci. 2009, 206, 2783–2790. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Comp. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Li, X.; Pu, C.S.; Bai, Y.; Huang, F.F. Effect of surfactant types on the foam stability of multiwalled carbon nanotube stabilized foam. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 648, 129389. [Google Scholar] [CrossRef]
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, D.N.; Li, P.H.; Li, Q.B.; Sun, G.Q. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Liebscher, M.; Tzounis, L.; Junger, D.; Dinh, T.T.; Mechtcherine, V. Electrical Joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes: Role of filler concentration, water content, and cement age. Smart Mater. Struct. 2020, 29, 125019. [Google Scholar] [CrossRef]
- Jung, M.; Lee, Y.S.; Hong, S.G.; Moon, J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem. Concr. Res. 2020, 131, 106017. [Google Scholar] [CrossRef]
- Shah, S.P.; Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Mondal, P. Nanoscale Modification of Cementitious Materials. In Nanotechnology in Construction (NICOM3); Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 125–130. [Google Scholar]
- Jang, S.H.; Hochstein, D.P.; Kawashima, S.; Yin, H.M. Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cem. Concr. Comp. 2017, 77, 49–59. [Google Scholar] [CrossRef]
- Lavagna, L.; Bartoli, M.; Suarez-Riera, D.; Cagliero, D.; Musso, S.; Pavese, M. Oxidation of Carbon Nanotubes for Improving the Mechanical and Electrical Properties of Oil-Well Cement-Based Composites. Acs Appl. Nano Mater. 2022, 5, 6671–6678. [Google Scholar] [CrossRef]
- Hawreen, A.; Bogas, J.A.; Dias, A.P.S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 2018, 168, 459–470. [Google Scholar] [CrossRef]
- Han, B.G.; Zhang, K.; Yu, X.; Kwon, E.; Ou, J.P. Fabrication of Piezoresistive CNT/CNF Cementitious Composites with Superplasticizer as Dispersant. J. Mater. Civil. Eng. 2012, 24, 658–665. [Google Scholar] [CrossRef]
- Rocha, V.V.; Ludvig, P. Nanocomposites Prepared by a Dispersion of Cnts on Cement Particles. Archit. Civ. Eng. Environ. 2018, 11, 73–77. [Google Scholar]
- Mesquita, E.; Sousa, I.; Vieira, M.; Matos, A.M.; Santos, L.P.M.; Silvestro, L.; Salvador, R.; D’Alessandro, A.; Ubertini, F. Investigation of the electrical sensing properties of cementitious composites produced with multi-wall carbon nanotubes dispersed in NaOH. J. Build. Eng. 2023, 77, 107496. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, L.B.; Yu, J.; Yi, B.L.; He, C.B.; Wang, Z.K.; Leung, C.K.Y. Mechanical properties and material characterization of cement mortar incorporating CNT-engineered polyvinyl alcohol latex. Constr. Build. Mater. 2022, 345, 128320. [Google Scholar] [CrossRef]
- Chen, J.X.; Akono, A.T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem. Concr. Res. 2020, 137, 106197. [Google Scholar] [CrossRef]
- Wang, J.L.; Dong, S.F.; Pang, S.D.; Zhou, C.S.; Han, B.G. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes. Cem. Concr. Comp. 2022, 128, 104453. [Google Scholar] [CrossRef]
- Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945. [Google Scholar] [CrossRef]
- Carrico, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of multi-walled carbon nanotube reinforced concrete. Constr. Build. Mater. 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Merodio-Perea, R.G.; Lado-Tourino, I.; Paez-Pavon, A.; Talayero, C.; Galan-Salazar, A.; Ait-Salem, O. Mechanical Properties of Cement Reinforced with Pristine and Functionalized Carbon Nanotubes: Simulation Studies. Materials 2022, 15, 7734. [Google Scholar] [CrossRef]
- Sanchez, F.; Zhang, L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics. J. Colloid Interf. Sci. 2008, 323, 349–358. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, G.; Hou, D.S.; Jin, Z.Q.; Wang, M.H.; Zhang, J.R.; Sun, G.X. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: Insights from molecular dynamics simulation. Constr. Build. Mater. 2020, 261, 120500. [Google Scholar] [CrossRef]
- Yang, Z.P.; Yang, J.F.; Shuai, B.; Niu, Y.T.; Yong, Z.Z.; Wu, K.J.; Zhang, C.J.; Qiao, X.Y.; Zhang, Y.Y. Superflexible yet robust functionalized carbon nanotube fiber reinforced sulphoaluminate cement-based grouting materials with excellent mechanical, electrical and thermal properties. Constr. Build. Mater. 2022, 328, 126999. [Google Scholar] [CrossRef]
- Wang, J.L.; Dong, S.F.; Pang, S.D.; Yu, X.; Han, B.G.; Ou, J.P. Tailoring Anti-Impact Properties of Ultra-High Performance Concrete by Incorporating Functionalized Carbon Nanotubes. Engineering 2022, 18, 232–245. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Nasibulin, A.G.; Kaupinen, E.I.; Mudimela, P.R.; Penttala, V. SEW/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Mater. Charact. 2009, 60, 735–740. [Google Scholar] [CrossRef]
- Han, B.G.; Zhang, L.Q.; Zeng, S.Z.; Dong, S.F.; Yu, X.; Yang, R.W.; Ou, J.P. Nano-core effect in nano-engineered cementitious composites. Compos. Part A-Appl. Sci. Manuf. 2017, 95, 100–109. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Amin, M.S.; El-Gamal, S.M.A.; Hashem, F.S. Fire resistance and mechanical properties of carbon nanotubes—Clay bricks wastes (Homra) composites cement. Constr. Build. Mater. 2015, 98, 237–249. [Google Scholar] [CrossRef]
- Batiston E, G.P.; Mezzomo, P.; Pelisser, F.; Matos, P.R. Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Rev. IBRACON De Estrut. E Mater. 2021, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Rear, E.A.; Onthong, S.; Pongprayoon, T. Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not? Nanomaterials 2024, 14, 80. https://doi.org/10.3390/nano14010080
O’Rear EA, Onthong S, Pongprayoon T. Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not? Nanomaterials. 2024; 14(1):80. https://doi.org/10.3390/nano14010080
Chicago/Turabian StyleO’Rear, Edgar A., Suthisa Onthong, and Thirawudh Pongprayoon. 2024. "Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not?" Nanomaterials 14, no. 1: 80. https://doi.org/10.3390/nano14010080
APA StyleO’Rear, E. A., Onthong, S., & Pongprayoon, T. (2024). Mechanical Strength and Conductivity of Cementitious Composites with Multiwalled Carbon Nanotubes: To Functionalize or Not? Nanomaterials, 14(1), 80. https://doi.org/10.3390/nano14010080