Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nano-Calcined Excavation Soil (NCES) Preparation
2.2. Cement Paste and Mortar Preparation Using NCES
2.3. Testing
3. Ball-Milling Conditions for NCES Preparation
4. Behavior of Cementitious Materials with NCES as a Substitute
4.1. Hydration Product Analysis
4.2. Microstructural Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramanathan, S. Reactivity of Supplementary Cementitious Materials in Model Systems and Cementitious Pastes; University of Miami: Coral Gables, FL, USA, 2021. [Google Scholar]
- Qu, F.; Li, W.; Dong, W.; Tam, V.W.; Yu, T. Durability deterioration of concrete under marine environment from material to structure: A critical review. J. Build. Eng. 2021, 35, 102074. [Google Scholar] [CrossRef]
- Abedi, M.; Fangueiro, R.; Correia, A.G. A review of intrinsic self-sensing cementitious composites and prospects for their application in transport infrastructures. Constr. Build. Mater. 2021, 310, 125139. [Google Scholar] [CrossRef]
- Nik Md Noordin Kahar, N.N.F.; Osman, A.F.; Alosime, E.; Arsat, N.; Mohammad Azman, N.A.; Syamsir, A.; Itam, Z.; Abdul Hamid, Z.A. The versatility of polymeric materials as self-healing agents for various types of applications: A review. Polymers 2021, 13, 1194. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Wu, C.; Xing, F.; Memon, S.A.; Sun, H. Recycling Nanoarchitectonics of Graphene Oxide from Carbon Fiber Reinforced Polymer by the Electrochemical Method. Nanomaterials 2022, 12, 3657. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.F.; Ren, Z.L.; Ling, L.; Memon, S.A.; Ren, J.; Liu, B.; Xing, F. Influence of Graphene Oxide on Interfacial Transition Zone of Mortar. J. Nanomater. 2020, 2020, 8919681. [Google Scholar] [CrossRef]
- Sun, H.; Ling, L.; Ren, Z.; Memon, S.A.; Xing, F. Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation. Nanomaterials 2020, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.X.; Liu, Q.; Sun, H.F.; Stach, E.A.; Zhang, H.Y.; Stanciu, L.; Xie, J. Preparation of high-surface-area carbon nanoparticle/graphene composites. Carbon 2012, 50, 3845–3853. [Google Scholar] [CrossRef]
- Zhao, Z.; Qi, T.; Zhou, W.; Hui, D.; Xiao, C.; Qi, J.; Zheng, Z.; Zhao, Z. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 2020, 9, 303–322. [Google Scholar] [CrossRef]
- Khalaf, M.A.; Ban, C.C.; Ramli, M. The constituents, properties and application of heavyweight concrete: A review. Constr. Build. Mater. 2019, 215, 73–89. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Wang, J.; Ou, J. Nano-Engineered Cementitious Composites: Principles and Practices; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gao, Y.; Jing, H.; Zhou, Z.; Chen, W.; Du, M.; Du, Y. Reinforced impermeability of cementitious composites using graphene oxide-carbon nanotube hybrid under different water-to-cement ratios. Constr. Build. Mater. 2019, 222, 610–621. [Google Scholar] [CrossRef]
- Sun, H.; Lian, W.; Zhang, X.; Liu, W.; Xing, F.; Ren, J. Synthesis and Processing Parameter Optimization of Nano-Belite via One-Step Combustion Method. Materials 2022, 15, 4913. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.; Alsayed, S.; Aqel, M. Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. Int. J. Civ. Environ. Eng. IJCEE-IJENS 2010, 10, 23–27. [Google Scholar]
- Morsy, M.; Alsayed, S.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Gruber, K.; Ramlochan, T.; Boddy, A.; Hooton, R.; Thomas, M. Increasing concrete durability with high-reactivity metakaolin. Cem. Concr. Compos. 2001, 23, 479–484. [Google Scholar] [CrossRef]
- Morsy, M.S.; Al-Salloum, Y.; Almusallam, T.; Abbas, H. Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar. J. Therm. Anal. Calorim. 2014, 116, 845–852. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Eddy, N.O.; Khan, M.A.; Khan, A.H.; Alomayri, T.; Berwal, P. Mechanical strength and durability analysis of mortars prepared with fly ash and nano-metakaolin. Case Stud. Constr. Mater. 2023, 18, e01796. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, Y.; Luo, Q. Exploring synergistic effects and hydration mechanisms in metakaolin-blended cement system with varying metakaolin and wollastonite content. Constr. Build. Mater. 2024, 425, 135962. [Google Scholar] [CrossRef]
- Thankam, G.L.; Thurvas Renganathan, N. Ideal supplementary cementing material–Metakaolin: A review. Int. Rev. Appl. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Jubier, N.J.; AlZubaidi, A.B. High quality geopolymer concrete by using binder nano metakaolin. J. Phys. Conf. Ser. 2023, 2432, 012003. [Google Scholar]
- Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. Metakaolin. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 493–511. [Google Scholar]
- Cygan, R.T.; Tazaki, K. Interactions of Kaolin Minerals in the Environment. Elements 2014, 10, 195–200. [Google Scholar] [CrossRef]
- Dill, H.G. Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Sci. Rev. 2016, 161, 16–129. [Google Scholar] [CrossRef]
- Jesus, C.K.; Sánchez, L.E. The long post-closure period of a kaolin mine. Rem Rev. Esc. Minas 2013, 66, 363–368. [Google Scholar] [CrossRef]
- Memon, M.B.; Yang, Z.; Tao, M.; Wu, X. Life cycle assessment of artisanal small-scale kaolin mining and its associated health implications among miners. Res. Sq. 2024, preprint. [Google Scholar] [CrossRef]
- Qin, B.; Li, H.; Wang, Z.; Jiang, Y.; Lu, D.; Du, X.; Qian, Q. New framework of low-carbon city development of China: Underground space based integrated energy systems. Undergr. Space 2023, 14, 300–318. [Google Scholar] [CrossRef]
- Watson, V. Digital visualisation as a new driver of urban change in Africa. Urban Plan. 2020, 5, 35–43. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Guo, W.; Guo, M.; Tan, Y.; Bai, E.; Zhao, G. Sustainable development of resources and the environment: Mining-induced eco-geological environmental damage and mitigation measures—A case study in the Henan coal mining area, China. Sustainability 2019, 11, 4366. [Google Scholar] [CrossRef]
- Ambroise, J.; Murat, M.; Pera, J. Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions. Cem. Concr. Res. 1985, 15, 261–268. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Liu, Y. Optimal water-cement ratio of cement-stabilized soil. Constr. Build. Mater. 2022, 320, 126211. [Google Scholar] [CrossRef]
- Gilkes, R.J.; Prakongkep, N. How the unique properties of soil kaolin affect the fertility of tropical soils. Appl. Clay Sci. 2016, 131, 100–106. [Google Scholar] [CrossRef]
- Kotake, N.; Kuboki, M.; Kiya, S.; Kanda, Y. Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill. Adv. Powder Technol. 2011, 22, 86–92. [Google Scholar] [CrossRef]
- Shin, H.; Lee, S.; Jung, H.S.; Kim, J.-B. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram. Int. 2013, 39, 8963–8968. [Google Scholar] [CrossRef]
- Dembovska, L.; Bajare, D.; Pundiene, I.; Vitola, L. Effect of pozzolanic additives on the strength development of high performance concrete. Procedia Eng. 2017, 172, 202–210. [Google Scholar] [CrossRef]
- Juilland, P.; Kumar, A.; Gallucci, E.; Flatt, R.J.; Scrivener, K.L. Effect of mixing on the early hydration of alite and OPC systems. Cem. Concr. Res. 2012, 42, 1175–1188. [Google Scholar] [CrossRef]
- Costoya Fernández, M.M. Effect of Particle Size on the Hydration Kinetics and Microstructural Development of Tricalcium Silicate; EPFL: Lausanne, Switzerland, 2008. [Google Scholar]
- Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- El-Diadamony, H.; Amer, A.A.; Sokkary, T.M.; El-Hoseny, S. Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC J. 2018, 14, 150–158. [Google Scholar] [CrossRef]
- Mihaylov, M.; Andonova, S.; Chakarova, K.; Vimont, A.; Ivanova, E.; Drenchev, N.; Hadjiivanov, K. An advanced approach for measuring acidity of hydroxyls in confined space: A FTIR study of low-temperature CO and 15N2 adsorption on MOF samples from the MIL-53 (Al) series. Phys. Chem. Chem. Phys. 2015, 17, 24304–24314. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Schmidt, T.; Lothenbach, B.; Romer, M.; Neuenschwander, J.; Scrivener, K. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Concr. Res. 2009, 39, 1111–1121. [Google Scholar] [CrossRef]
- Kocak, Y.; Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T. The fluidity of fly ash–cement paste containing naphthalene sulfonate superplasticizer. Cem. Concr. Res. 2004, 34, 1017–1024. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, M.; Shen, W.; Zhu, G.; Ge, X. Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Constr. Build. Mater. 2018, 190, 680–690. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg. Chem. 2003, 42, 2280–2287. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Characterization of white Portland cement hydration and the CSH structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2004, 34, 857–868. [Google Scholar] [CrossRef]
- Dong, Y.; Feng, C.; Zhao, Q.; Liang, X. Study on the Structure of C-S-H Gels of Slag–Cement Hardened Paste by 29Si, 27Al MAS NMR. Appl. Magn. Reson. 2019, 50, 1345–1357. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Justice, J.; Kurtis, K. Influence of metakaolin surface area on properties of cement-based materials. J. Mater. Civ. Eng. 2007, 19, 762–771. [Google Scholar] [CrossRef]
Chemical Composition (wt%) | SiO2 | Al2O3 | Fe2O3 | K2O | CaO | TiO2 | MgO | SO3 | Na2O |
---|---|---|---|---|---|---|---|---|---|
Sieved excavation soil | 50.26 | 43.91 | 4.25 | 0.92 | 0.02 | 0.33 | 0.07 | 0.10 | - |
OPC | 21.77 | 4.62 | 3.62 | - | 64.68 | - | 2.80 | 0.46 | 0.50 |
Specimen No. | Milling Ball Diameter (mm) | Surface Area (m2/g) | ||
---|---|---|---|---|
1st Round 60 min | 2nd Round 60 min | 3rd Round 60 min | ||
1 | 1 | 1 | - | 59.32 |
2 | 1 | 0.1 | - | 59.46 |
3 | 1 | 1 | 1 | 69.84 |
4 | 1 | 1 | 0.1 | 108.76 |
Cement Mix Design | NCES (wt% of OPC) | NCES Surface Area (m2/g) | Milling Ball Size (mm) * | ||
---|---|---|---|---|---|
Round 1 60 min | Round 2 60 min | Round 3 60 min | |||
Control | 0 | - | - | - | - |
N0 | 15 | 9.87 | - | - | - |
N1 | 15 | 38.73 | 1 | - | - |
N2 | 15 | 59.32 | 1 | 1 | - |
N3 | 15 | 108.76 | 1 | 1 | 0.1 |
Specimen | Surface Area (m2/g) | The Cumulative Integrated Intensity/% | Ψ | Al/Si | α/% | |||
---|---|---|---|---|---|---|---|---|
I (Q0) | I (Q1) | I (Q2) | I (Q2(1Al)) | |||||
Control | - | 28.28 | 37.63 | 21.51 | 5.43 | 3.58 | 0.04 | 71.72 |
N0 | 9.87 | 24.35 | 30.83 | 12.81 | 18.88 | 4.67 | 0.15 | 75.65 |
N1 | 38.73 | 21.99 | 26.30 | 11.93 | 21.82 | 5.40 | 0.18 | 78.01 |
N2 | 59.32 | 19.92 | 20.52 | 7.80 | 25.99 | 6.56 | 0.24 | 80.08 |
N3 | 108.76 | 18.22 | 8.82 | 11.05 | 25.85 | 13.29 | 0.28 | 81.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Yang, J.; Yao, W.; Xing, F.; Sun, H.; Li, Y. Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement. Nanomaterials 2024, 14, 850. https://doi.org/10.3390/nano14100850
Ling L, Yang J, Yao W, Xing F, Sun H, Li Y. Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement. Nanomaterials. 2024; 14(10):850. https://doi.org/10.3390/nano14100850
Chicago/Turabian StyleLing, Li, Jindong Yang, Wanqiong Yao, Feng Xing, Hongfang Sun, and Yali Li. 2024. "Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement" Nanomaterials 14, no. 10: 850. https://doi.org/10.3390/nano14100850
APA StyleLing, L., Yang, J., Yao, W., Xing, F., Sun, H., & Li, Y. (2024). Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement. Nanomaterials, 14(10), 850. https://doi.org/10.3390/nano14100850