The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Temperature Control of Paraffin and Lard Mixed Oil
2.3. Synthesis of LPMs
2.4. Characterization
2.5. Magnetic Propulsion and Fluid Resistance of LPMs
2.6. LPMs for Micropore Occlusion
2.7. Magnetic Propulsion on Gastric Surfaces and Pore Occlusion for Gastric Perforation Using LPMs
2.8. Numerical Simulation
3. Results and Discussion
3.1. Conceptual Design of the LPMs for Gastric Perforation Repair
3.2. Fabrication and Characterizations of the LPMs
3.3. Dynamic Behaviors of LPMs under Rotating Magnetic Field
3.4. Phase Transition of LPMs for Micropore Repair
3.5. Actuation of LPMs on Gastric Wall and Repair for Gastric Perforation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soreide, K.; Thorsen, K.; Harrison, E.M.; Bingener, J.; Moller, M.H.; Ohene-Yeboah, M.; Soreide, J.A. Perforated peptic ulcer. Lancet 2015, 386, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Asmis, T.R.; Capanu, M.; Kelsen, D.P.; Shah, M.A. Systemic chemotherapy does not increase the risk of gastrointestinal perforation. Ann. Oncol. 2007, 18, 2006–2008. [Google Scholar] [CrossRef]
- Pappas, P.C.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 2006–2008. [Google Scholar] [CrossRef]
- Toyokawa, T.; Inaba, T.; Omote, S.; Okamoto, A.; Miyasaka, R.; Watanabe, K.; Izumikawa, K.; Horii, J.; Fujita, I.; Ishikawa, S.; et al. Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms: Analysis of 1123 lesions. J. Gastroenterol. Hepatol. 2012, 27, 907–912. [Google Scholar] [CrossRef]
- Schmassmann, A. Mechanisms of ulcer healing and effects of nonsteroidal anti-inflammatory drugs. Am. J. Med. 1998, 104, 43S–51S; discussion 79S–80S. [Google Scholar] [CrossRef] [PubMed]
- Vakayil, V.; Bauman, B.; Joppru, K.; Mallick, R.; Tignanelli, C.; Connett, J.; Ikramuddin, S.; Harmon, J.V., Jr. Surgical repair of perforated peptic ulcers: Laparoscopic versus open approach. Surg. Endosc. Other Interv. Tech. 2019, 33, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, T.; Tokuhara, K.; Nakatani, K.; Kon, M. Laparoscopic management for spontaneous jejunal perforation caused by nonspecific ulcer: A case report. Int. J. Surg. Case Rep. 2017, 39, 309–312. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, J.; Chen, T.; Cheng, J.; Guo, K.; Su, W.; Zhou, P.; Hu, J. New endoscopic closure technique, “internal traction-assisted suspended closure,” for GI defect closure: A pilot study (with video). Gastrointest. Endosc. 2024, 99, 186–192. [Google Scholar] [CrossRef]
- Kantsevoy, S.V.; Bitner, M.; Hajiyeva, G.; Mirovski, P.M.; Cox, M.E.; Swope, T.; Alexander, K.; Meenaghan, N.; Fitzpatrick, J.L.; Gushchin, V. Endoscopic management of colonic perforations: Clips versus suturing closure. Gastrointest. Endosc. 2016, 84, 487–493. [Google Scholar] [CrossRef]
- Tarasconi, A.; Coccolini, F.; Biffl, W.L.; Tomasoni, M.; Ansaloni, L.; Picetti, E.; Molfino, S.; Shelat, V.; Cimbanassi, S.; Weber, D.G.; et al. Perforated and bleeding peptic ulcer: WSES guidelines. World J. Emerg. Surg. 2020, 15, 3. [Google Scholar] [CrossRef]
- Aljebreen, A.M.; Fallone, C.A.; Barkun, A.N.; Invest, R. Nasogastric aspirate predicts high-risk endoscopic lesions in patients with acute upper-GI bleeding. Gastrointest. Endosc. 2004, 59, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xiong, K.; Hu, J.; Li, Z.; Xu, L.; Guan, J. Micromotors with Spontaneous Multipattern Motion and Microvortex for Enhanced “On-the-Fly” Molecule Enrichment. Adv. Intell. Syst. 2023, 5, 2300386. [Google Scholar] [CrossRef]
- Xiong, K.; Lin, J.; Chen, Q.; Gao, T.; Xu, L.; Guan, J. An axis-asymmetric self-driven micromotor that can perform precession multiplying “on-the-fly”mass transfer. Matter 2023, 6, 907–924. [Google Scholar] [CrossRef]
- Li, J.X.; de Avila, B.E.F.; Gao, W.; Zhang, L.F.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huo, Z.Y.; Guo, J.M.; Liu, H.; Qi, X.L.; Wu, Z.H. Micromotor-derived composites for biomedicine delivery and other related purposes. Bio-Des. Manuf. 2020, 3, 133–147. [Google Scholar] [CrossRef]
- Li, M.; Xi, N.; Wang, Y.C.; Liu, L.Q. Progress in Nanorobotics for Advancing Biomedicine. Ieee Trans. Biomed. Eng. 2021, 68, 130–147. [Google Scholar] [CrossRef]
- Liu, D.; Guo, R.R.; Wang, B.; Hu, J.W.; Lu, Y. Magnetic Micro/Nanorobots: A New Age in Biomedicines. Adv. Intell. Syst. 2022, 4, 19. [Google Scholar] [CrossRef]
- Sun, Z.L.; Hou, Y.L. Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Self-Propulsion to Controllable Navigation. Adv. Ther. 2022, 5, 22. [Google Scholar] [CrossRef]
- Chen, S.; Prado-Morales, C.; Sanchez-deAlcazar, D.; Sanchez, S. Enzymatic micro/nanomotors in biomedicine: From single motors to swarms. J. Mater. Chem. B 2024, 12, 2711–2719. [Google Scholar] [CrossRef]
- Xiong, K.; Xu, L.; Lin, J.; Mou, F.; Guan, J. Mg-Based Micromotors with Motion Responsive to Dual Stimuli. Research 2020, 2020, 6213981. [Google Scholar] [CrossRef]
- Mou, F.Z.; Chen, C.R.; Ma, H.R.; Yin, Y.X.; Wu, Q.Z.; Guan, J.G. Self-Propelled Micromotors Driven by the Magnesium-Water Reaction and Their Hemolytic Properties. Angew. Chem.-Int. Ed. 2013, 52, 7208–7212. [Google Scholar] [CrossRef] [PubMed]
- Mou, F.Z.; Chen, C.R.; Zhong, Q.; Yin, Y.X.; Ma, H.R.; Guan, J.G. Autonomous Motion and Temperature-Controlled Drug Delivery of Mg/Pt-Poly(N-isopropylacrylamide) Janus Micromotors Driven by Simulated Body Fluid and Blood Plasma. Acs Appl. Mater. Interfaces 2014, 6, 9897–9903. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.R.; Karshalev, E.; Li, J.X.; Soto, F.; Castillo, R.; Campos, I.; Mou, F.Z.; Guan, J.G.; Wang, J. Transient Micromotors That Disappear When No Longer Needed. Acs Nano 2016, 10, 10389–10396. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.R.; Karshalev, E.; Guan, J.G.; Wang, J. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications. Small 2018, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Feng, Y.Z.; Wang, T.W.; Guan, J.G. Micro-/Nanorobots at Work in Active Drug Delivery. Adv. Funct. Mater. 2018, 28, 23. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Mou, F.; Cao, C.; Yu, L.; Li, Z.; Guan, J. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci. Adv. 2023, 9, eadk7251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhao, W.; Hu, J.; Mao, C.; Zhou, M. Application of Nanotechnology in Thrombus Therapy. Adv. Healthc. Mater. 2023, 12, 2202578. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Tu, Y.F.; Wilson, D.A. Micro/nanomotors towards in vivo application: Cell, tissue and biofluid. Chem. Soc. Rev. 2017, 46, 5289–5310. [Google Scholar] [CrossRef]
- York, P.A.; Pena, R.; Kent, D.; Wood, R.J. Microrobotic laser steering for minimally invasive surgery. Sci. Robot. 2021, 6, 12. [Google Scholar] [CrossRef]
- Gunduz, S.; Albadawi, H.; Oklu, R. Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Adv. Intell. Syst. 2021, 3, 8. [Google Scholar] [CrossRef]
- Liu, H.; Guo, Q.; Wang, W.; Yu, T.; Yuan, Z.; Ge, Z.; Yang, W. A review of magnetically driven swimming microrobots: Material selection, structure design, control method, and applications. Rev. Adv. Mater. Sci. 2023, 62, 20230119. [Google Scholar] [CrossRef]
- Pan, D.; Mou, F.Z.; Li, X.F.; Deng, Z.Y.; Sun, J.; Xu, L.L.; Guan, J.G. Multifunctional magnetic oleic acid-coated MnFe2O4/polystyrene Janus particles for water treatment. J. Mater. Chem. A 2016, 4, 11768–11774. [Google Scholar] [CrossRef]
- Xie, H.; Sun, M.M.; Fan, X.J.; Lin, Z.H.; Chen, W.N.; Wang, L.; Dong, L.X.; He, Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci. Robot. 2019, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Fernandez de Avila, B.; Angsantikul, P.; Li, J.X.; Lopez-Ramirez, M.A.; Ramirez-Herrera, D.E.; Thamphiwatana, S.; Chen, C.R.; Delezuk, J.; Samakapiruk, R.; Ramez, V.; et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 9. [Google Scholar]
- de Avila, B.E.F.; Angsantikul, P.; Li, J.X.; Gao, W.; Zhang, L.F.; Wang, J. Micromotors Go In Vivo: From Test Tubes to Live Animals. Adv. Funct. Mater. 2018, 28, 12. [Google Scholar]
- Yue, H.E.; Chang, X.C.; Liu, J.M.; Zhou, D.K.; Li, L.Q. Wheel-like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching Up Microscale Intestinal Perforation. Acs Appl. Mater. Interfaces 2022, 14, 8743–8752. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Chen, H.; Law, J.; Pu, H.; Xie, S.; Duan, F.; Sun, Y.; Liu, N.; Yu, J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 2024, 15, 644. [Google Scholar] [CrossRef]
- Lovell, P.A.; Schork, F.J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21, 4396–4441. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, P.; Cao, R.; Wu, J.; Ji, H.; Wang, M.; Hu, C.; Huang, P.; Wang, X. Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. Acs Nano 2023, 17, 22355–22370. [Google Scholar] [CrossRef]
- Li, M.Q.; Li, D.Q. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution. J. Colloid Interface Sci. 2018, 532, 657–665. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, K.; Xu, L. The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction. Nanomaterials 2024, 14, 865. https://doi.org/10.3390/nano14100865
Xiong K, Xu L. The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction. Nanomaterials. 2024; 14(10):865. https://doi.org/10.3390/nano14100865
Chicago/Turabian StyleXiong, Kang, and Leilei Xu. 2024. "The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction" Nanomaterials 14, no. 10: 865. https://doi.org/10.3390/nano14100865
APA StyleXiong, K., & Xu, L. (2024). The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction. Nanomaterials, 14(10), 865. https://doi.org/10.3390/nano14100865