Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. PL Spectra of Irradiated SiO2/Si Samples after Annealing in Different Regimes
3.2. PL Excitation Spectra
3.3. Structure of Studied Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A Review of Ga2O3 Materials, Processing, and Devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for Ultra-High Power Rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Sasaki, K.; Ye, J.; Zhang, Y. Recent Progress of Ga2O3 Power Technology: Large-Area Devices, Packaging and Applications. Jpn. J. Appl. Phys. 2023, 62, SF0801. [Google Scholar] [CrossRef]
- Titov, A.I.; Karabeshkin, K.V.; Struchkov, A.I.; Nikolaev, V.I.; Azarov, A.; Gogova, D.S.; Karaseov, P.A. Comparative Study of Radiation Tolerance of GaN and Ga2O3 Polymorphs. Vacuum 2022, 200, 111005. [Google Scholar] [CrossRef]
- Azarov, A.; Fernández, J.G.; Zhao, J.; Djurabekova, F.; He, H.; He, R.; Prytz, Ø.; Vines, L.; Bektas, U.; Chekhonin, P.; et al. Universal Radiation Tolerant Semiconductor. Nat. Commun. 2023, 14, 4855. [Google Scholar] [CrossRef]
- Bosi, M.; Mazzolini, P.; Seravalli, L.; Fornari, R. Ga2O3 polymorphs: Tailoring the Epitaxial Growth Conditions. J. Mater. Chem. C 2020, 8, 10975–10992. [Google Scholar] [CrossRef]
- Guo, D.; Guo, Q.; Chen, Z.; Wu, Z.; Li, P.; Tang, W. Review of Ga2O3-Based Optoelectronic Devices. Mater. Today Phys. 2019, 11, 100157. [Google Scholar] [CrossRef]
- Ping, L.K.; Berhanuddin, D.D.; Mondal, A.K.; Menon, P.S.; Mohamed, M.A. Properties and Perspectives of Ultrawide Bandgap Ga2O3 in Optoelectronic Applications. Chin. J. Phys. 2021, 73, 195–212. [Google Scholar] [CrossRef]
- Mengle, K.A.; Shi, G.; Bayerl, D.; Kioupakis, E. First-Principles Calculations of the near-Edge Optical Properties of β-Ga2O3. Appl. Phys. Lett. 2016, 109, 212104. [Google Scholar] [CrossRef]
- Almaev, A.; Nikolaev, V.; Kopyev, V.; Shapenkov, S.; Yakovlev, N.; Kushnarev, B.; Pechnikov, A.; Deng, J.; Izaak, T.; Chikiryaka, A.; et al. Solar-Blind Ultraviolet Detectors Based on High-Quality HVPE α-Ga2O3 Films With Giant Responsivity. IEEE Sens. J. 2023, 23, 19245–19255. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Hu, H.; Wang, S.; Liu, A.; Guo, D. Review of Self-Powered Solar-Blind Photodetectors Based on Ga2O3. Mater. Today Phys. 2022, 28, 100883. [Google Scholar] [CrossRef]
- Lin, C.H.; Lee, C.T. Ga2O3-Based Solar-Blind Deep Ultraviolet Light-Emitting Diodes. J. Lumin. 2020, 224, 117326. [Google Scholar] [CrossRef]
- Jianjun, L.; Jinliang, Y.; Liang, S.; Ting, L. Electrical and Optical Properties of Deep Ultraviolet Transparent Conductive Ga2O3/ITO Films by Magnetron Sputtering. J. Semicond. 2010, 31, 103001. [Google Scholar] [CrossRef]
- Minami, T.; Nishi, Y.; Miyata, T. High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as n-Type Layer. Appl. Phys. Express 2013, 6, 044101. [Google Scholar] [CrossRef]
- Blevins, J.; Yang, G. On Optical Properties and Scintillation Performance of Emerging Ga2O3: Crystal Growth, Emission Mechanisms and Doping Strategies. Mater. Res. Bull. 2021, 144, 111494. [Google Scholar] [CrossRef]
- Alema, F.; Hertog, B.; Ledyaev, O.; Volovik, D.; Thoma, G.; Miller, R.; Osinsky, A.; Mukhopadhyay, P.; Bakhshi, S.; Ali, H.; et al. Solar Blind Photodetector Based on Epitaxial Zinc Doped Ga2O3 Thin Film. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1770127. [Google Scholar] [CrossRef]
- Hu, K.H.; Wang, Z.K.; Wang, K.L.; Zhuo, M.P.; Zhang, Y.; Igbari, F.; Ye, Q.Q.; Liao, L.S. γ-Ga2O3 Nanocrystals Electron-Transporting Layer for High-Performance Perovskite Solar Cells. Sol. RRL 2019, 3, 1900201. [Google Scholar] [CrossRef]
- Sigaev, V.N.; Golubev, N.V.; Ignat’Eva, E.S.; Paleari, A.; Lorenzi, R. Light-Emitting Ga-Oxide Nanocrystals in Glass: A New Paradigm for Low-Cost and Robust UV-to-Visible Solar-Blind Converters and UV Emitters. Nanoscale 2014, 6, 1763–1774. [Google Scholar] [CrossRef]
- Rajamani, S.; Arora, K.; Belov, A.; Korolev, D.; Nikolskaya, A.; Usov, Y.; Pavlov, D.; Mikhaylov, A.; Tetelbaum, D.; Kumar, M. Enhanced Solar-Blind Photodetection Performance of Encapsulated Ga2O3 Nanocrystals in Al2O3 Matrix. IEEE Sens. J. 2018, 18, 4046–4052. [Google Scholar] [CrossRef]
- Nikolskaya, A.; Okulich, E.; Korolev, D.; Stepanov, A.; Nikolichev, D.; Mikhaylov, A.; Tetelbaum, D.; Almaev, A.; Bolzan, C.A.; Buaczik, A.; et al. Ion Implantation in β-Ga2O3: Physics and Technology. J. Vac. Sci. Technol. A 2021, 39, 030802. [Google Scholar] [CrossRef]
- Korolev, D.S.; Matyunina, K.S.; Nikolskaya, A.A.; Kriukov, R.N.; Nezhdanov, A.V.; Belov, A.I.; Mikhaylov, A.N.; Sushkov, A.A.; Pavlov, D.A.; Yunin, P.A.; et al. Ion-Beam Synthesis of Gallium Oxide Nanocrystals in a SiO2/Si Dielectric Matrix. Nanomaterials 2022, 12, 1840. [Google Scholar] [CrossRef]
- Korolev, D.S.; Kriukov, R.N.; Matyunina, K.S.; Nikolskaya, A.A.; Belov, A.I.; Mikhaylov, A.N.; Sushkov, A.A.; Pavlov, D.A.; Tetelbaum, D.I. Structure and Chemical Composition of Ion-Synthesized Gallium Oxide Nanocrystals in Dielectric Matrices. Nanomaterials 2023, 13, 1658. [Google Scholar] [CrossRef]
- Jamwal, N.S.; Kiani, A. Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications. Nanomaterials 2022, 12, 2061. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, Q.; Zhang, D.; Wang, Q.; Li, S.; Wang, W.; Fan, Q.; Zhang, J. Structural, Optical and Photoluminescence Properties of Ga2O3 Thin Films Deposited by Vacuum Thermal Evaporation. J. Lumin. 2019, 206, 53–58. [Google Scholar] [CrossRef]
- Binet, L.; Gourier, D. Origin of the Blue Luminescence of β-Ga2O3. J. Phys. Chem. Solids 1998, 59, 1241–1249. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Di Francesca, D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-Based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Feng, B.; He, G.; Zhang, X.; Chen, X.; Li, Z.; Xu, L.; Huang, R.; Feng, J.; Wu, Y.; Jia, Z.; et al. The Effect of Annealing on the Sn-Doped (−201) β-Ga2O3 Bulk. Mater. Sci. Semicond. Process. 2022, 147, 106752. [Google Scholar] [CrossRef]
- Frodason, Y.K.; Johansen, K.M.; Vines, L.; Varley, J.B. Self-Trapped Hole and Impurity-Related Broad Luminescence in β-Ga2O3. J. Appl. Phys. 2020, 127, 075701. [Google Scholar] [CrossRef]
- Gao, H.; Muralidharan, S.; Pronin, N.; Karim, M.R.; White, S.M.; Asel, T.; Foster, G.; Krishnamoorthy, S.; Rajan, S.; Cao, L.R.; et al. Optical Signatures of Deep Level Defects in Ga2O3. Appl. Phys. Lett. 2018, 112, 242102. [Google Scholar] [CrossRef]
- Wang, T.; Farvid, S.S.; Abulikemu, M.; Radovanovic, P.V. Size-Tunable Phosphorescence in Colloidal Metastable γ-Ga2O3 Nanocrystals. J. Am. Chem. Soc. 2010, 132, 9250–9252. [Google Scholar] [CrossRef]
- Fernandes, B.; Hegde, M.; Stanish, P.C.; Mišković, Z.L.; Radovanovic, P.V. Photoluminescence Decay Dynamics in Γ-Ga2O3 Nanocrystals: The Role of Exclusion Distance at Short Time Scales. Chem. Phys. Lett. 2017, 684, 135–140. [Google Scholar] [CrossRef]
- Nguen, T.; Shin, S.; Choi, H.; Bark, C. Recent advances in self-powered and flexible UVC photodetectors. Exploration 2022, 2, 20210078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korolev, D.S.; Matyunina, K.S.; Nikolskaya, A.A.; Belov, A.I.; Mikhaylov, A.N.; Sushkov, A.A.; Pavlov, D.A.; Tetelbaum, D.I. Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals. Nanomaterials 2024, 14, 870. https://doi.org/10.3390/nano14100870
Korolev DS, Matyunina KS, Nikolskaya AA, Belov AI, Mikhaylov AN, Sushkov AA, Pavlov DA, Tetelbaum DI. Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals. Nanomaterials. 2024; 14(10):870. https://doi.org/10.3390/nano14100870
Chicago/Turabian StyleKorolev, Dmitry S., Kristina S. Matyunina, Alena A. Nikolskaya, Alexey I. Belov, Alexey N. Mikhaylov, Artem A. Sushkov, Dmitry A. Pavlov, and David I. Tetelbaum. 2024. "Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals" Nanomaterials 14, no. 10: 870. https://doi.org/10.3390/nano14100870
APA StyleKorolev, D. S., Matyunina, K. S., Nikolskaya, A. A., Belov, A. I., Mikhaylov, A. N., Sushkov, A. A., Pavlov, D. A., & Tetelbaum, D. I. (2024). Effect of Post-Implantation Heat Treatment Conditions on Photoluminescent Properties of Ion-Synthesized Gallium Oxide Nanocrystals. Nanomaterials, 14(10), 870. https://doi.org/10.3390/nano14100870