Raman Scattering Enhancement through Pseudo-Cavity Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scattering Matrix Method (SMM) Simulations
2.2. COMSOL-Based Simulations
2.3. Reflectance Measurements and Ellipsometry
2.4. Sputtering Deposition
2.5. Rhodamine 6G/PVP Solution and Film Preparation
2.6. Raman Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2024, 434, 137469. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Haruna, S.A.; Sheng, W.; Bei, Q.; Ahmad, W.; Zareef, M.; Chen, Q.; Ding, Z. SERS-activated platforms for chemical contaminants in food: Probes, encoding methods, and detection. TrAC Trends Anal. Chem. 2023, 169, 117365. [Google Scholar] [CrossRef]
- Issatayeva, A.; Farnesi, E.; Cialla-May, D.; Schmitt, M.; Rizzi, F.M.A.; Milanese, D.; Selleri, S.; Cucinotta, A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024, 267, 125198. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, J.; Yao, F.; Zhang, W.; Qi, X.; Gao, X.; Liu, Y.; Wang, J.; Zou, M.; Liang, P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Microchim. Acta 2023, 190, 465. [Google Scholar] [CrossRef]
- Liu, X.; Su, X.; Chen, M.; Xie, Y.; Li, M. Self-calibrating surface-enhanced Raman scattering-lateral flow immunoassay for determination of amyloid-β biomarker of Alzheimer’s disease. Biosens. Bioelectron. 2024, 245, 115840. [Google Scholar] [CrossRef]
- Lv, W.; Fu, B.; Liu, W.; Huang, W.; Li, M.; Liu, Y.; Kang, Y.; Wang, J.; Bai, S.; Lu, C.; et al. Efficient detection of single circulating tumor cell in blood using Raman mapping based on Aptamer-SERS bio-probe coupled with micropore membrane filtration. Talanta 2024, 267, 125220. [Google Scholar] [CrossRef]
- Ambardar, S.; Binder, G.; Huynh, P.K.; Nguyen, D.; Hrim, H.; Le, T.Q.; Voronine, D.V. Surface-enhanced Raman imaging of intact cancer cell membrane on a rough aluminum substrate. J. Raman Spectrosc. 2023, 54, 940–949. [Google Scholar] [CrossRef]
- Rusciano, G.; Capaccio, A.; Sasso, A.; Capo, A.; Almuzara, C.M.; Staiano, M.; D’Auria, S.; Varriale, A. A Surface-Enhanced Raman Spectroscopy-Based Biosensor for the Detection of Biological Macromolecules: The Case of the Lipopolysaccharide Endotoxin Molecules. Int. J. Mol. Sci. 2023, 24, 12099. [Google Scholar] [CrossRef]
- Dhinakaran, A.K.; Dharmalingam, P.; Ganesh, S.; Venkatakrishnan, K.; Das, S.; Tan, B. Molecular Crosstalk between T Cells and Tumor Uncovers GBM-Specific T Cell Signatures in Blood: Noninvasive GBM Diagnosis Using Immunosensors. ACS Nano 2022, 16, 14134–14148. [Google Scholar] [CrossRef]
- Fasanella, A.; Cosentino, K.; Beneduci, A.; Chidichimo, G.; Cazzanelli, E.; Barberi, R.C.; Castriota, M. Thermal structural evolutions of DMPC-water biomimetic systems investigated by Raman Spectroscopy. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 1253–1258. [Google Scholar] [CrossRef]
- Cazzanelli, E.; De Luca, O.; Vuono, D.; Policicchio, A.; Castriota, M.; Desiderio, G.; De Santo, M.P.; Aloise, A.; Fasanella, A.; Rugiero, T.; et al. Characterization of graphene grown on copper foil by chemical vapor deposition (CVD) at ambient pressure conditions. J. Raman Spectrosc. 2018, 49, 1006–1014. [Google Scholar] [CrossRef]
- Politano, G.G.; Cazzanelli, E.; Versace, C.; Castriota, M.; Desiderio, G.; Davoli, M.; Vena, C.; Bartolino, R. Micro-Raman investigation of Ag/graphene oxide/Au sandwich structure. Mater. Res. Express 2019, 6, 075605. [Google Scholar] [CrossRef]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Tungsten and Titanium Oxide Thin Films Obtained by the Sol-Gel Process as Electrodes in Electrochromic Devices. Front. Mater. 2022, 9, 912013. [Google Scholar] [CrossRef]
- Rizzuto, C.; Barberi, R.C.; Castriota, M. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers 2023, 15, 3347. [Google Scholar] [CrossRef]
- Rousaki, A.; Vandenabeele, P. In situ Raman spectroscopy for cultural heritage studies. J. Raman Spectrosc. 2021, 52, 2178–2189. [Google Scholar] [CrossRef]
- Tournié, A.; Prinsloo, L.C.; Paris, C.; Colomban, P.; Smith, B. The first in situ Raman spectroscopic study of San rock art in South Africa: Procedures and preliminary results. J. Raman Spectrosc. 2011, 42, 399–406. [Google Scholar] [CrossRef]
- Costantini, I.; Castro, K.; Madariaga, J.M. Portable and laboratory analytical instruments for the study of materials, techniques and environmental impacts in mediaeval mural paintings. Anal. Methods 2018, 10, 4854–4870. [Google Scholar] [CrossRef]
- Perardi, A.; Appolonia, L.; Mirti, P. Non-destructive in situ determination of pigments in 15th century wall paintings by Raman microscopy. Anal. Chim. Acta 2003, 480, 317–325. [Google Scholar] [CrossRef]
- Castagnaro, I.B.; Nucera, A.; Barberi, R.C.; Castriota, M. Study and micro-Raman characterization of pigments present on majolicas of historical and artistic interest from Gerace, Italy. Herit. Sci. 2023, 11, 24. [Google Scholar] [CrossRef]
- Zaman, M.A.; Wu, M.; Ren, W.; Jensen, M.A.; Davis, R.W.; Hesselink, L. Spectral tweezers: Single sample spectroscopy using optoelectronic tweezers. Appl. Phys. Lett. 2024, 124, 071104. [Google Scholar] [CrossRef]
- Liang, Z.; Chu, Y.; Gen, M.; Chan, C.K. Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmos. Chem. Phys. 2022, 22, 3017–3044. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Li, X.; Zhang, Y.; Chen, Q.; Ye, Z.; Alqarni, Z.; Bell, S.E.J.; Xu, Y. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Candreva, A.; Crea, R.; Nucera, A.; Barberi, R.C.; Castriota, M.; La Deda, M. Fibronectin-derived protein forms a protein corona on gold nanoparticles: Synthesis, Raman and optical properties of a new plasmonic nanocarrier. J. Mater. Sci. 2023, 58, 9618–9632. [Google Scholar] [CrossRef]
- Rizzuto, C.; Ferraro, A.; Nucera, A.; Lio, G.E.; Barberi, R.C.; Castriota, M. Surface-Enhanced Raman Spectroscopy on an As-deposited Fano Resonance Multilayer Substrate. J. Phys. Chem. C 2023, 127, 12751–12759. [Google Scholar] [CrossRef]
- Candreva, A.; Di Maio, G.; Parisi, F.; Scarpelli, F.; Crispini, A.; Godbert, N.; Ricciardi, L.; Nucera, A.; Rizzuto, C.; Barberi, R.C.; et al. Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. Chemosensors 2022, 10, 176. [Google Scholar] [CrossRef]
- Caligiuri, V.; Tedeschi, G.; Palei, M.; Miscuglio, M.; Martin-Garcia, B.; Guzman-Puyol, S.; Hedayati, M.K.; Kristensen, A.; Athanassiou, A.; Cingolani, R.; et al. Biodegradable and Insoluble Cellulose Photonic Crystals and Metasurfaces. ACS Nano 2020, 14, 9502–9511. [Google Scholar] [CrossRef]
- Espinha, A.; Dore, C.; Matricardi, C.; Alonso, M.I.; Goñi, A.R.; Mihi, A. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics 2018, 12, 343–348. [Google Scholar] [CrossRef]
- De Nicola, F.; Purayil, N.S.P.; Spirito, D.; Miscuglio, M.; Tantussi, F.; Tomadin, A.; De Angelis, F.; Polini, M.; Krahne, R.; Pellegrini, V. Multiband Plasmonic Sierpinski Carpet Fractal Antennas. ACS Photonics 2018, 5, 2418–2425. [Google Scholar] [CrossRef]
- Aouani, H.; Rahmani, M.; Šípová, H.; Torres, V.; Hegnerová, K.; Beruete, M.; Homola, J.; Hong, M.; Navarro-Cía, M.; Maier, S.A. Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies. J. Phys. Chem. C 2013, 117, 18620–18626. [Google Scholar] [CrossRef]
- De Nicola, F.; Purayil, N.S.P.; Miŝeikis, V.; Spirito, D.; Tomadin, A.; Coletti, C.; Polini, M.; Krahne, R.; Pellegrini, V. Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors. Sci. Rep. 2020, 10, 6882. [Google Scholar] [CrossRef] [PubMed]
- Jeon, T.Y.; Kim, D.J.; Park, S.-G.; Kim, S.-H.; Kim, D.-H. Nanostructured plasmonic substrates for use as SERS sensors. Nano Converg. 2016, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, I. Fabrication Strategies of 3D Plasmonic Structures for SERS. BioChip J. 2019, 13, 30–42. [Google Scholar] [CrossRef]
- Wang, A.X.; Kong, X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials 2015, 8, 3024–3052. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Rippa, M.; Conti, Y.; Vestri, A.; Castagna, R.; Fusco, G.; Suffredini, E.; Zhou, J.; Zyss, J.; De Luca, A.; et al. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Appl. Mater. Interfaces 2021, 13, 43715–43725. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, J.; Yao, X.; Lyu, D.; Zhu, J.; Yang, Z.; Liu, B.; Ren, B. Large-Area Plasmonic Metamaterial with Thickness-Dependent Absorption. Adv. Opt. Mater. 2021, 9, 2001375. [Google Scholar] [CrossRef]
- Cho, W.J.; Kim, Y.; Kim, J.K. Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility. ACS Nano 2012, 6, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ryan, J.; Hansen, P.; Cheng, Y.-T.; Lu, T.-J.; Hesselink, L. Nano-Optical Conveyor Belt, Part II: Demonstration of Handoff between Near-Field Optical Traps. Nano Lett. 2014, 14, 2971–2976. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, L.; Zaman, M.A. Plasmonic C-Shaped Structures and their Applications in Photonics and Biotechnology. In Encyclopedia of Materials: Electronics; Haseeb, A.S.M.A., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 382–396. [Google Scholar]
- Hansen, P.; Hesselink, L.; Leen, B. Design of a subwavelength bent C-aperture waveguide. Opt. Lett. 2007, 32, 1737–1739. [Google Scholar] [CrossRef]
- Shi, X.; Hesselink, L.; Thornton, R.L. Ultrahigh light transmission through a C-shaped nanoaperture. Opt. Lett. 2003, 28, 1320–1322. [Google Scholar] [CrossRef]
- Petti, L.; Capasso, R.; Rippa, M.; Pannico, M.; La Manna, P.; Peluso, G.; Calarco, A.; Bobeico, E.; Musto, P. A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vib. Spectrosc. 2016, 82, 22–30. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; Wachsmann-Hogiu, S. Inexpensive and Flexible SERS Substrates on Adhesive Tape Based on Biosilica Plasmonic Nanocomposites. ACS Appl. Nano Mater. 2018, 1, 5316–5326. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Zhang, W.-Y.; Hu, Y.-J.; Song, H.-Y.; Zeeshan, A.; Ge, C.; Liu, S.-B. Silver dendrite metasurface SERS substrates prepared by photoreduction method for perfluorooctanoic acid detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123932. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Yang, B.; Zhang, C.; Zhu, J.; Wang, Y.; Li, L.; Xiong, S.; Zhang, J.; Qi, Z.; Wu, W. A Surface Enhanced Raman Scattering (SERS) Sensing Method Enhanced by All-metal Metasurface. Phys. Scr. 2023, 98, 125964. [Google Scholar] [CrossRef]
- Cui, S.; Tian, C.; Su, Y.; Tian, J.; Fu, Y. Micro-cones Array-Based Plasmonic Metasurface for Sensitive and Enhanced Raman Detection. Plasmonics 2020, 15, 2003–2009. [Google Scholar] [CrossRef]
- Wang, H.-N.; Fales, A.M.; Vo-Dinh, T. Plasmonics-based SERS nanobiosensor for homogeneous nucleic acid detection. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, S.; Chen, X.; Mattei, M.; Dieringer, J.A.; Ciraldo, J.P.; Van Duyne, R.P. Using a Fabry–Perot Cavity to Augment the Enhancement Factor for Surface-Enhanced Raman Spectroscopy and Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2018, 122, 14865–14871. [Google Scholar] [CrossRef]
- Patra, A.; Caligiuri, V.; Krahne, R.; De Luca, A. Strong Light–Matter Interaction and Spontaneous Emission Reshaping via Pseudo-Cavity Modes. Adv. Opt. Mater. 2021, 9, 2101076. [Google Scholar] [CrossRef]
- Rumpf, R.C. Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Prog. Electromagn. Res. B 2011, 35, 241–261. [Google Scholar] [CrossRef]
- Lehmkemper, K.; Kyeremateng, S.O.; Heinzerling, O.; Degenhardt, M.; Sadowski, G. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Mol. Pharm. 2017, 14, 157–171. [Google Scholar] [CrossRef]
- Brzezińska, M.; Szubiakiewicz, E.; Jędrzejczyk, M. Thermal stability of poly(N-vinylpyrrolidone) immobilized on the surface of silica in the presence of noble metals in an atmosphere of hydrogen and oxygen. Mater. Today Commun. 2021, 26, 101706. [Google Scholar] [CrossRef]
- Xiong, H.; DeLuca, G.; Rui, Y.; Zhang, B.; Li, Y.; Zhang, Q.; Wang, H.; Reichmanis, E. Modifying Perovskite Films with Polyvinylpyrrolidone for Ambient-Air-Stable Highly Bendable Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 35385–35394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caligiuri, V.; Nucera, A.; Patra, A.; Castriota, M.; De Luca, A. Raman Scattering Enhancement through Pseudo-Cavity Modes. Nanomaterials 2024, 14, 875. https://doi.org/10.3390/nano14100875
Caligiuri V, Nucera A, Patra A, Castriota M, De Luca A. Raman Scattering Enhancement through Pseudo-Cavity Modes. Nanomaterials. 2024; 14(10):875. https://doi.org/10.3390/nano14100875
Chicago/Turabian StyleCaligiuri, Vincenzo, Antonello Nucera, Aniket Patra, Marco Castriota, and Antonio De Luca. 2024. "Raman Scattering Enhancement through Pseudo-Cavity Modes" Nanomaterials 14, no. 10: 875. https://doi.org/10.3390/nano14100875
APA StyleCaligiuri, V., Nucera, A., Patra, A., Castriota, M., & De Luca, A. (2024). Raman Scattering Enhancement through Pseudo-Cavity Modes. Nanomaterials, 14(10), 875. https://doi.org/10.3390/nano14100875