Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces
Abstract
:1. Introduction
2. Materials and Structure Design
- -
- the metal layer must be thick enough to eliminate spurious transmission;
- -
- the metal layer must be thin enough to couple the light to the lower interface.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raether, H. Surface plasmons on smooth surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 2006; pp. 4–39. [Google Scholar]
- Bozhevolnyi, S.I. Introduction to surface plasmon-polariton waveguides. In Plasmonic Nanoguides and Circuits; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2019; pp. 1–32. [Google Scholar]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1. [Google Scholar]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Li, C. Nonlinear optics. In Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Chen, Z. Grating Coupled Surface Plasmons in Metallic Structures; University of Exeter: Exeter, UK, 2007. [Google Scholar]
- Nabizada, A.; Tari, H.; Fazio, E. Design of a buried grating structure for the optimization of surface plasmon polariton wave excitation at the lower interface of a metallic nanostrip. In Nonlinear Optics and Applications XIII, Proceedings of the SPIE OPTICS + OPTOELECTRONICS Conference, Prague, Czech Republic, 24–28 April 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12569, pp. 52–54. [Google Scholar]
- Tari, H.; Bile, A.; Nabizada, A.; Fazio, E. Ultra-broadband interconnection between two SPP nanostrips by a photorefractive soliton waveguide. Opt. Express 2023, 31, 26092–26103. [Google Scholar] [CrossRef] [PubMed]
- Tari, H.; Bile, A.; Nabizada, A.; Fazio, E. Immobilization of photorefractive solitons by charge anchoring on conductive walls. Opt. Lett. 2023, 48, 6508–6511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qiu, J.; Li, X.; Zhao, J.; Liu, L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lemarchand, F.; Lequime, M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 2012, 20, 15734–15751. [Google Scholar] [CrossRef] [PubMed]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Lou, Y.; Pan, H.; Zhu, T.; Ruan, Z. Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings. J. Opt. Soc. Am. B 2016, 33, 819–824. [Google Scholar] [CrossRef]
- Ramanandan, G.; Ramakrishnan, G.; Kumar, N.; Adam, A.; Planken, P. Emission of terahertz pulses from nanostructured metal surfaces. J. Phys. D Appl. Phys. 2014, 47, 374003. [Google Scholar] [CrossRef]
0° | 30° Forward | 30° Backward | 60° Forward | 60° Backward | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | T | T | T | ||||||||||||
CG | 16.5 | 4.8 | 3.5 | 9.2 | 5.8 | 1.6 | 21.1 | 6.8 | 3.1 | 0.0 | 12.1 | 0.0 | 21.9 | 13.4 | 1.6 |
BG | 6.6 | 8.6 | 0.77 | 1.9 | 1.0 | 1.9 | 13.5 | 3.0 | 4.5 | 0.3 | 11.5 | 0.02 | 28.0 | 10.1 | 2.8 |
BBG | 3.7 | 10.4 | 0.4 | 3.2 | 1.2 | 2.5 | 8.9 | 3.2 | 2.7 | 0.2 | 7.4 | 0.03 | 18.1 | 10.8 | 1.9 |
BCBG | 13.7 | 2.1 | 6.5 | 9.3 | 2.2 | 4.2 | 30.3 | 5.8 | 5.2 | 0.6 | 2.5 | 0.02 | 27.2 | 5.7 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabizada, A.; Tari, H.; Bile, A.; Fazio, E. Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces. Nanomaterials 2024, 14, 878. https://doi.org/10.3390/nano14100878
Nabizada A, Tari H, Bile A, Fazio E. Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces. Nanomaterials. 2024; 14(10):878. https://doi.org/10.3390/nano14100878
Chicago/Turabian StyleNabizada, Arif, Hamed Tari, Alessandro Bile, and Eugenio Fazio. 2024. "Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces" Nanomaterials 14, no. 10: 878. https://doi.org/10.3390/nano14100878
APA StyleNabizada, A., Tari, H., Bile, A., & Fazio, E. (2024). Novel Highly Efficient Buried Gratings for Selective Coupling of SPP Waves onto Single Interfaces. Nanomaterials, 14(10), 878. https://doi.org/10.3390/nano14100878