Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials
Abstract
:1. Introduction
2. SPEs Based on 2D Materials
2.1. SPEs Based on TMDs
2.2. SPEs Based on hBN
3. Creation and Positioning of SPEs
3.1. Defect Engineering of SPEs
3.2. Strain Engineering of SPEs
4. The Property Enhancement of SPEs
4.1. Plasmonic Field Coupling with SPEs
4.2. Optical Microcavity Coupling with SPEs
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 71101. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Macfarlane, A.G.J.; Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef]
- Mitchell, J.R.; Nairz, O.; Kwiat, P.G.; White, A.G. “Interaction-free” imaging. Phys. Rev. A 1998, 58, 605–613. [Google Scholar] [CrossRef]
- Zoller, P.; Kimble, H.J.; Mabuchi, H.; Cirac, J.I. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett. 1997, 78, 3221–3224. [Google Scholar] [CrossRef]
- Duan, L.M.; Lukin, M.D.; Cirac, J.I.; Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001, 414, 413–418. [Google Scholar] [CrossRef]
- O’Brien, J.L. Optical Quantum Computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; de Riedmatten, H.; Gisin, N.; Sangouard, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33–80. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef]
- Holmes, M.J.; Arakawa, Y. The heat is on: Towards the realization of non-cryogenic photonic quantum technologies. Mater. Quantum Technol. 2021, 1, 13001. [Google Scholar] [CrossRef]
- Michaelis De Vasconcellos, S.; Wigger, D.; Wurstbauer, U.; Holleitner, A.W.; Bratschitsch, R.; Kuhn, T. Single-Photon Emitters in Layered Van der Waals Materials. Phys. Status Solidi 2022, 259, 2100566. [Google Scholar] [CrossRef]
- Ou, Z.Y.; Mandel, L.; Hong, C.K. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044–2046. [Google Scholar] [CrossRef] [PubMed]
- Lounis, B.; Orrit, M. Single-photon sources. Rep. Prog. Phys. 2005, 68, 1129. [Google Scholar] [CrossRef]
- Brown, R.H.; Twiss, R.Q. Correlation between Photons in two Coherent Beams of Light. Nature 1956, 177, 27–29. [Google Scholar] [CrossRef]
- Shi, Z.; Qi, Z.; Zang, H.; Jiang, K.; Chen, Y.; Jia, Y.; Wu, T.; Zhang, S.; Sun, X.; Li, D. Point Defects in Monolayer h-AlN as Candidates for Single-Photon Emission. ACS Appl. Mater. Inter. 2021, 13, 37380–37387. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, M.; Legero, T.; Kuhn, A.; Rempe, G. Photon statistics of a non-stationary periodically driven single-photon source. New J. Phys. 2004, 6, 86. [Google Scholar] [CrossRef]
- Mckeever, J.; Boca, A.; Boozer, A.D.; Miller, R.; Buck, J.R.; Kuzmich, A.; Kimble, H.J. Deterministic Generation of Single Photons from One Atom Trapped in a Cavity. Science 2004, 303, 1992–1994. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Becher, C.; Russo, C.; Eschner, J.; Blatt, R. A single-photon source based on a single Ca+ ion. New J. Phys. 2004, 6, 94. [Google Scholar] [CrossRef]
- Keller, M.; Lange, B.; Hayasaka, K.; Lange, W.; Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 2004, 431, 1075–1078. [Google Scholar] [CrossRef]
- Lounis, B.; Tamarat, P.; Orrit, M.; Brunel, C. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett. 1999, 83, 2722–2725. [Google Scholar] [CrossRef]
- Lounis, B.; Moerner, W.E. Single photons on demand from a single molecule at room temperature. Nature 2000, 407, 491–493. [Google Scholar] [CrossRef]
- Holmes, M.J.; Choi, K.; Kako, S.; Arita, M.; Arakawa, Y. Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot. Nano Lett. 2014, 14, 982–986. [Google Scholar] [CrossRef]
- Sipahigil, A.; Nguyen, C.T.; Bhaskar, M.K.; Evans, R.E.; Jelezko, F.; Lukin, M.D.; Sukachev, D.D. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. Phys. Rev. Lett. 2017, 119, 223602. [Google Scholar] [CrossRef]
- Mayer, S.; Zarda, P.; Weinfurter, H.; Kurtsiefer, C. Stable Solid-State Source of Single Photons. Phys. Rev. Lett. 2000, 85, 290–293. [Google Scholar] [CrossRef]
- Shields, A.J.; O Sullivan, M.P.; Farrer, I.; Ritchie, D.A.; Hogg, R.A.; Leadbeater, M.L.; Norman, C.E.; Pepper, M. Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Appl. Phys. Lett. 2000, 76, 3673–3675. [Google Scholar] [CrossRef]
- Michler, P.; Imamoğlu, A.; Mason, M.D.; Carson, P.J.; Strouse, G.F.; Buratto, S.K. Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000, 406, 968–970. [Google Scholar] [CrossRef]
- Santori, C.; Pelton, M.; Yamamoto, Y.; Benson, O. Regulated and Entangled Photons from a Single Quantum Dot. Phys. Rev. Lett. 2000, 84, 2513–2516. [Google Scholar] [CrossRef]
- Moreau, E.; Robert, I.; Gérard, J.M.; Abram, I.; Manin, L.; Thierry-Mieg, V. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 2001, 79, 2865–2867. [Google Scholar] [CrossRef]
- Tran, T.T.; Choi, S.; Scott, J.A.; Xu, Z.; Zheng, C.; Seniutinas, G.; Bendavid, A.; Fuhrer, M.S.; Toth, M.; Aharonovich, I. Room-Temperature Single-Photon Emission from Oxidized Tungsten Disulfide Multilayers. Adv. Opt. Mater. 2017, 5, 1600939. [Google Scholar] [CrossRef]
- Dutta, S.; Cai, T.; Buyukkaya, M.A.; Barik, S.; Aghaeimeibodi, S.; Waks, E. Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. Appl. Phys. Lett. 2018, 113, 191105. [Google Scholar] [CrossRef]
- Vogl, T.; Lecamwasam, R.; Buchler, B.C.; Lu, Y.; Lam, P.K. Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics 2019, 6, 1955–1962. [Google Scholar] [CrossRef]
- Turunen, M.; Brotons-Gisbert, M.; Dai, Y.; Wang, Y.; Scerri, E.; Bonato, C.; Jöns, K.D.; Sun, Z.; Gerardot, B.D. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 2022, 4, 219–236. [Google Scholar] [CrossRef]
- Regan, E.C.; Wang, D.; Paik, E.Y.; Zeng, Y.; Zhang, L.; Zhu, J.; Macdonald, A.H.; Deng, H.; Wang, F. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795. [Google Scholar] [CrossRef]
- Qu, F.; Macdonald, A.H.; Wu, F. Exciton band structure of monolayer MoS2. Phys. Rev. B 2015, 91, 75310. [Google Scholar] [CrossRef]
- Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409. [Google Scholar] [CrossRef]
- Lee, C.; Hone, J.; Shan, J.; Heinz, T.F.; Mak, K.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Niu, Q.; Xiao, D. Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport. Phys. Rev. Lett. 2007, 99, 236809. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Zhang, Y.; Nong, H.; Li, S.; Wu, Q.; Tan, J.; Liu, B. Locally Strained 2D Materials: Preparation, Properties, and Applications. Adv. Mater. 2024, 2314145. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Tonndorf, P.; Schmidt, R.; Schneider, R.; Kern, J.; Buscema, M.; Steele, G.A.; Castellanos-Gomez, A.; van der Zant, H.S.J.; Michaelis De Vasconcellos, S.; Bratschitsch, R. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015, 2, 347–352. [Google Scholar] [CrossRef]
- Chakraborty, C.; Kinnischtzke, L.; Goodfellow, K.M.; Beams, R.; Vamivakas, A.N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 2015, 10, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J.Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Sidler, M.; Allain, A.V.; Lembke, D.S.; Kis, A.; Imamoğlu, A. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 2015, 10, 491–496. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Clark, G.; Schaibley, J.R.; He, Y.; Chen, M.; Wei, Y.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X.; et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Niehues, I.; Tonndorf, P.; Schmidt, R.; Wigger, D.; Schneider, R.; Stiehm, T.; Michaelis De Vasconcellos, S.; Reiter, D.E.; Kuhn, T. Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2. Adv. Mater. 2016, 28, 7101–7105. [Google Scholar] [CrossRef]
- Chakraborty, C.; Qiu, L.; Konthasinghe, K.; Mukherjee, A.; Dhara, S.; Vamivakas, N. 3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure. Nano Lett. 2018, 18, 2859–2863. [Google Scholar] [CrossRef] [PubMed]
- Paur, M.; Smejkal, V.; Burgdörfer, J.; Mueller, T.; Libisch, F.; Linhart, L. Localized Intervalley Defect Excitons as Single-Photon Emitters in WSe2. Phys. Rev. Lett. 2019, 123, 146401. [Google Scholar] [CrossRef]
- Parto, K.; Azzam, S.I.; Banerjee, K.; Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 2021, 12, 3585. [Google Scholar] [CrossRef]
- Kumar, S.; Brotóns-Gisbert, M.; Al-Khuzheyri, R.; Branny, A.; Ballesteros-Garcia, G.; Sánchez-Royo, J.F.; Gerardot, B.D. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 2016, 3, 882–886. [Google Scholar] [CrossRef]
- He, Y.; Iff, O.; Lundt, N.; Baumann, V.; Davanco, M.; Srinivasan, K.; Höfling, S.; Schneider, C. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 2016, 7, 13409. [Google Scholar] [CrossRef] [PubMed]
- Iff, O.; Tedeschi, D.; Martín-Sánchez, J.; Moczała-Dusanowska, M.; Tongay, S.; Yumigeta, K.; Taboada-Gutiérrez, J.; Savaresi, M.; Rastelli, A.; Alonso-González, P.; et al. Strain-Tunable Single Photon Sources in WSe2 Monolayers. Nano Lett. 2019, 19, 6931–6936. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, H.; Tan, Q.; Zhang, J.; Yu, T.; Ding, K.; Jiang, D.; Dou, X.; Shi, J.; Sun, B. Anomalous Pressure Characteristics of Defects in Hexagonal Boron Nitride Flakes. ACS Nano 2018, 12, 7127–7133. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Sigl, L.; Gyger, S.; Barthelmi, K.; Florian, M.; Rey, S.; Taniguchi, T.; Watanabe, K.; Jahnke, F.; Kastl, C.; et al. Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS2. ACS Photonics 2021, 8, 669–677. [Google Scholar] [CrossRef]
- Zhao, H.; Pettes, M.T.; Zheng, Y.; Htoon, H. Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 2021, 12, 6753. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Deng, M.; Zhang, J.L.; Borghardt, S.; Kardynal, B.; Vučković, J.; Heinz, T.F. Site-Controlled Quantum Emitters in Monolayer MoSe2. Nano Lett. 2021, 21, 2376–2381. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Lorke, M.; Florian, M.; Sigger, F.; Sigl, L.; Rey, S.; Wierzbowski, J.; Cerne, J.; Müller, K.; Mitterreiter, E.; et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 2019, 10, 2755. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Molas, M.R.; Huang, Z.; Zhang, G.; Wang, F.; Sun, Z. Moiré photonics and optoelectronics. Science 2020, 379, eadg0014. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, C.; Yu, J.; Zhong, J.; Li, B.; Zhang, Z.; Liu, Z.; Wang, Z.M.; Pan, A.; Duan, X. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422. [Google Scholar] [CrossRef]
- Tran, K.; Moody, G.; Wu, F.; Lu, X.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D.A.; Quan, J.; Singh, A.; et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Seyler, K.L.; Rivera, P.; Yu, H.; Wilson, N.P.; Ray, E.L.; Mandrus, D.G.; Yan, J.; Yao, W.; Xu, X. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.; Brotons-Gisbert, M.; Koong, Z.X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B.D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526. [Google Scholar] [CrossRef]
- Ziegler, J.; Klaiss, R.; Blaikie, A.; Miller, D.; Horowitz, V.R.; Alemán, B.J. Deterministic Quantum Emitter Formation in Hexagonal Boron Nitride via Controlled Edge Creation. Nano Lett. 2019, 19, 2121–2127. [Google Scholar] [CrossRef]
- Exarhos, A.L.; Hopper, D.A.; Grote, R.R.; Alkauskas, A.; Bassett, L.C. Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride. ACS Nano 2017, 11, 3328–3336. [Google Scholar] [CrossRef]
- Vogl, T.; Campbell, G.; Buchler, B.C.; Lu, Y.; Lam, P.K. Fabrication and Deterministic Transfer of High-Quality Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics 2018, 5, 2305–2312. [Google Scholar] [CrossRef]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef]
- Noh, G.; Choi, D.; Kim, J.; Im, D.; Kim, Y.; Seo, H.; Lee, J. Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride. Nano Lett. 2018, 18, 4710–4715. [Google Scholar] [CrossRef]
- Exarhos, A.L.; Hopper, D.A.; Patel, R.N.; Doherty, M.W.; Bassett, L.C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 2019, 10, 222. [Google Scholar] [CrossRef]
- Choi, S.; Tran, T.T.; Elbadawi, C.; Lobo, C.; Wang, X.; Juodkazis, S.; Seniutinas, G.; Toth, M.; Aharonovich, I. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers. ACS Appl. Mater. Inter. 2016, 8, 29642–29648. [Google Scholar] [CrossRef]
- Jungwirth, N.R.; Calderon, B.; Ji, Y.; Spencer, M.G.; Flatté, M.E.; Fuchs, G.D. Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride. Nano Lett. 2016, 16, 6052–6057. [Google Scholar] [CrossRef] [PubMed]
- Schell, A.W.; Tran, T.T.; Takashima, H.; Takeuchi, S.; Aharonovich, I. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics 2016, 1, 91302. [Google Scholar] [CrossRef]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stéphan, O.; Kociak, M.; Tizei, L.H.G.; Zobelli, A. Bright UV Single Photon Emission at Point Defects in h-BN. Nano Lett. 2016, 16, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Elbadawi, C.; Tran, T.T.; Kianinia, M.; Li, X.; Liu, D.; Hoffman, T.B.; Nguyen, M.; Kim, S.; Edgar, J.H.; et al. Single photon emission from plasma treated 2D hexagonal boron nitride. Nanoscale 2018, 10, 7957–7965. [Google Scholar] [CrossRef] [PubMed]
- Wickramaratne, D.; Mackoit, M.; Alkauskas, A.; Van de Walle, C.G.; Weston, L. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 2018, 97, 214104. [Google Scholar] [CrossRef]
- Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D.K.; Furchi, M.M.; Jarillo-Herrero, P.; Ford, M.J.; Aharonovich, I.; Englund, D. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 2017, 8, 705. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, N.; Xu, Z.; Tran, T.T.; Kianinia, M.; Scott, J.; Bradac, C.; Aharonovich, I.; Toth, M. Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride. ACS Nano 2019, 13, 3132–3140. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J.; et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779. [Google Scholar] [CrossRef]
- Gupta, S.; Wu, W.; Huang, S.; Yakobson, B.I. Single-Photon Emission from Two-Dimensional Materials, to a Brighter Future. J. Phys. Chem. Lett. 2023, 14, 3274–3284. [Google Scholar] [CrossRef]
- Tonndorf, P.; Schwarz, S.; Kern, J.; Niehues, I.; Del Pozo-Zamudio, O.; Dmitriev, A.I.; Bakhtinov, A.P.; Borisenko, D.N.; Kolesnikov, N.N.; Tartakovskii, A.I.; et al. Single-photon emitters in GaSe. 2D Mater. 2017, 4, 21010. [Google Scholar] [CrossRef]
- Kim, H.; Moon, J.S.; Noh, G.; Lee, J.; Kim, J. Position and Frequency Control of Strain-Induced Quantum Emitters in WSe2 Monolayers. Nano Lett. 2019, 19, 7534–7539. [Google Scholar] [CrossRef]
- Daveau, R.S.; Vandekerckhove, T.; Mukherjee, A.; Wang, Z.; Shan, J.; Mak, K.F.; Vamivakas, A.N.; Fuchs, G.D. Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. Apl Photonics 2020, 5, 96105. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Cai, H.; Ma, L.; Qu, Y.; Liu, Z.; Wang, S.; Zhan, J.; Tan, Q.; Sheng, B.; et al. Realization of single-photon emitters with high brightness and high stability and excellent monochromaticity. Matter 2024, 7, 1106–1116. [Google Scholar] [CrossRef]
- Chejanovsky, N.; Rezai, M.; Paolucci, F.; Kim, Y.; Rendler, T.; Rouabeh, W.; Fávaro De Oliveira, F.; Herlinger, P.; Denisenko, A.; Yang, S.; et al. Structural Attributes and Photodynamics of Visible Spectrum Quantum Emitters in Hexagonal Boron Nitride. Nano Lett. 2016, 16, 7037–7045. [Google Scholar] [CrossRef]
- Ngoc My Duong, H.; Nguyen, M.A.P.; Kianinia, M.; Ohshima, T.; Abe, H.; Watanabe, K.; Taniguchi, T.; Edgar, J.H.; Aharonovich, I.; Toth, M. Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. ACS Appl. Mater. Inter. 2018, 10, 24886–24891. [Google Scholar] [CrossRef]
- Fischer, M.; Caridad, J.M.; Sajid, A.; Ghaderzadeh, S.; Ghorbani-Asl, M.; Gammelgaard, L.; Bøggild, P.; Thygesen, K.S.; Krasheninnikov, A.V.; Xiao, S.; et al. Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Sci. Adv. 2021, 7, eabe7138. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Zhang, D.; Zhang, R.; Zhang, Q.; Sun, H.; Li, Y.; Ning, C. Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride. ACS Nano 2022, 16, 14254–14261. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Bersin, E.; Chakraborty, C.; Lu, A.; Grosso, G.; Kong, J.; Englund, D. Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors. ACS Photonics 2020, 7, 1135–1140. [Google Scholar] [CrossRef]
- Luo, Y.; Shepard, G.D.; Ardelean, J.V.; Rhodes, D.A.; Kim, B.; Barmak, K.; Hone, J.C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142. [Google Scholar] [CrossRef]
- Branny, A.; Kumar, S.; Proux, R.; Gerardot, B.D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053. [Google Scholar] [CrossRef]
- Palacios-Berraquero, C.; Kara, D.M.; Montblanch, A.R.P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A.K.; Loncar, M.; Ferrari, A.C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093. [Google Scholar] [CrossRef]
- Wang, Q.; Maisch, J.; Tang, F.; Zhao, D.; Yang, S.; Joos, R.; Portalupi, S.L.; Michler, P.; Smet, J.H. Highly Polarized Single Photons from Strain-Induced Quasi-1D Localized Excitons in WSe2. Nano Lett. 2021, 21, 7175–7182. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Jeong, K.; Lee, J.M.; Kim, K.; Lee, S.; Huh, W.; Kim, H.; Choi, J.; Kim, J.M.; Kim, Y.S.; et al. Polarization Control of Deterministic Single-Photon Emitters in Monolayer WSe2. Nano Lett. 2021, 21, 1546–1554. [Google Scholar] [CrossRef]
- Kumar, S.; Kaczmarczyk, A.; Gerardot, B.D. Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2. Nano Lett. 2015, 15, 7567–7573. [Google Scholar] [CrossRef]
- Chakraborty, C.; Mukherjee, A.; Moon, H.; Konthasinghe, K.; Qiu, L.; Hou, W.; Peña, T.; Watson, C.; Wu, S.M.; Englund, D.; et al. Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor. Optica 2020, 7, 580–585. [Google Scholar] [CrossRef]
- Abramov, A.N.; Chestnov, I.Y.; Alimova, E.S.; Ivanova, T.; Mukhin, I.S.; Krizhanovskii, D.N.; Shelykh, I.A.; Iorsh, I.V.; Kravtsov, V. Photoluminescence imaging of single photon emitters within nanoscale strain profiles in monolayer WSe2. Nat. Commun. 2023, 14, 5737. [Google Scholar] [CrossRef] [PubMed]
- Dass, C.K.; Khan, M.A.; Clark, G.; Simon, J.A.; Gibson, R.; Mou, S.; Xu, X.; Leuenberger, M.N.; Hendrickson, J.R. Ultra-Long Lifetimes of Single Quantum Emitters in Monolayer WSe2/hBN Heterostructures. Adv. Quantum Technol. 2019, 2, 1900022. [Google Scholar] [CrossRef]
- Azzam, S.I.; Parto, K.; Moody, G. Purcell enhancement and polarization control of single-photon emitters in monolayer WSe2 using dielectric nanoantennas. Nanophotonics 2023, 12, 477–484. [Google Scholar] [CrossRef]
- Tran, T.T.; Wang, D.; Xu, Z.; Yang, A.; Toth, M.; Odom, T.W.; Aharonovich, I. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. Nano Lett. 2017, 17, 2634–2639. [Google Scholar] [CrossRef]
- Cai, T.; Dutta, S.; Aghaeimeibodi, S.; Yang, Z.; Nah, S.; Fourkas, J.T.; Waks, E. Coupling Emission from Single Localized Defects in Two-Dimensional Semiconductor to Surface Plasmon Polaritons. Nano Lett. 2017, 17, 6564–6568. [Google Scholar] [CrossRef]
- Tripathi, L.N.; Iff, O.; Betzold, S.; Dusanowski, A.; Emmerling, M.; Moon, K.; Lee, Y.J.; Kwon, S.; Höfling, S.; Schneider, C. Spontaneous Emission Enhancement in Strain-Induced WSe2 Monolayer-Based Quantum Light Sources on Metallic Surfaces. ACS Photonics 2018, 5, 1919–1926. [Google Scholar] [CrossRef]
- Cai, T.; Kim, J.; Yang, Z.; Dutta, S.; Aghaeimeibodi, S.; Waks, E. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 2018, 5, 3466–3471. [Google Scholar] [CrossRef]
- Fröch, J.E.; Kim, S.; Mendelson, N.; Kianinia, M.; Toth, M.; Aharonovich, I. Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano 2020, 14, 7085–7091. [Google Scholar] [CrossRef] [PubMed]
- Tonndorf, P.; Del Pozo-Zamudio, O.; Gruhler, N.; Kern, J.; Schmidt, R.; Dmitriev, A.I.; Bakhtinov, A.P.; Tartakovskii, A.I.; Pernice, W.; Michaelis De Vasconcellos, S.; et al. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. Nano Lett. 2017, 17, 5446–5451. [Google Scholar] [CrossRef] [PubMed]
- Flatten, L.C.; Weng, L.; Branny, A.; Johnson, S.; Dolan, P.R.; Trichet, A.A.P.; Gerardot, B.D.; Smith, J.M. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 2018, 112, 191105. [Google Scholar] [CrossRef]
- Yangui, A.; Pillet, S.; Bendeif, E.; Lusson, A.; Triki, S.; Abid, Y.; Boukheddaden, K. Broadband Emission in a New Two-Dimensional Cd-Based Hybrid Perovskite. ACS Photonics 2018, 5, 1599–1611. [Google Scholar] [CrossRef]
- Häußler, S.; Bayer, G.; Waltrich, R.; Mendelson, N.; Li, C.; Hunger, D.; Aharonovich, I.; Kubanek, A. Tunable Fiber-Cavity Enhanced Photon Emission from Defect Centers in hBN. Adv. Opt. Mater. 2021, 9, 2002218. [Google Scholar] [CrossRef]
- Iff, O.; Buchinger, Q.; Moczała-Dusanowska, M.; Kamp, M.; Betzold, S.; Davanco, M.; Srinivasan, K.; Tongay, S.; Antón-Solanas, C.; Höfling, S.; et al. Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe2 Monolayer Quantum Dot in a Circular Bragg Grating Cavity. Nano Lett. 2021, 21, 4715–4720. [Google Scholar] [CrossRef]
- Zang, H.; Sun, X.; Jiang, K.; Chen, Y.; Zhang, S.; Ben, J.; Jia, Y.; Wu, T.; Shi, Z.; Li, D. Cation Vacancy in Wide Bandgap III-Nitrides as Single-Photon Emitter: A First-Principles Investigation. Adv. Sci. 2021, 8, 2100100. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Wang, T.; Chen, L.; Chen, Z.; Gao, K.; Aoki, T.; Li, M.; Zhang, J.; Schulz, T.; et al. Single-photon emission from isolated monolayer islands of InGaN. Light Sci. Appl. 2020, 9, 159. [Google Scholar] [CrossRef]
- Jin, C.; Regan, E.C.; Yan, A.; Iqbal Bakti Utama, M.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, G.; Tang, J.; Xu, X.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 2017, 3, e1701696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Guo, H.; Chen, S.; Wu, B.; Li, S.; He, J.; Liu, Z.; Lu, G.; Duan, X.; Pan, A.; et al. Strong Interlayer Coupling in Twisted Transition Metal Dichalcogenide Moiré Superlattices. Adv. Mater. 2023, 35, 2210909. [Google Scholar] [CrossRef] [PubMed]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Pérez De Lara, D.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Gong, Z.; He, D.; Yan, Y.; Li, S.; Zhao, K.; Wang, J.; Wang, Y.; Zhang, X. Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials. Nanomaterials 2024, 14, 918. https://doi.org/10.3390/nano14110918
Zhang C, Gong Z, He D, Yan Y, Li S, Zhao K, Wang J, Wang Y, Zhang X. Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials. Nanomaterials. 2024; 14(11):918. https://doi.org/10.3390/nano14110918
Chicago/Turabian StyleZhang, Chengzhi, Zehuizi Gong, Dawei He, Yige Yan, Songze Li, Kun Zhao, Jiarong Wang, Yongsheng Wang, and Xiaoxian Zhang. 2024. "Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials" Nanomaterials 14, no. 11: 918. https://doi.org/10.3390/nano14110918
APA StyleZhang, C., Gong, Z., He, D., Yan, Y., Li, S., Zhao, K., Wang, J., Wang, Y., & Zhang, X. (2024). Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials. Nanomaterials, 14(11), 918. https://doi.org/10.3390/nano14110918