A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pristine WO3 and WO3 with Oxygen Vacancies
2.2. Preparation of Pristine WO3 and WO3 with Oxygen Vacancies
2.3. Photocatalytic Performance Experiments
2.4. Detection and Measurements of Photogenerated Radicals
3. Results and Discussion
3.1. Structures and Morphologies Properties
3.2. Photoelectrochemistry (PEC) Properties
3.3. Photocatalytic Degradation of CBZ
3.4. Optimization of Oxygen Vacancy
3.5. Mechanism of Photocatalytic Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, T.; Xing, Z.; Xiu, Z.; Li, Z.; Chen, P.; Zhu, Q.; Zhou, W. Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2−x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation. J. Hazard. Mater. 2019, 364, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, X.; Dong, Y.; Xia, Y.; Wang, H. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Appl. Catal. B Environ. 2019, 256, 117872. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, G.; Liu, H.; Chen, J.; Ma, S.; An, T. Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism. Environ. Sci. Nano 2019, 6, 948–958. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.; Ling, L.; Yan, S.; Pan, D.; Ge, H.; Li, H.; Bian, Z. Enhanced Photocatalytic Degradation Performance by Fluid-Induced Piezoelectric Field. Environ. Sci. Technol. 2018, 52, 7842–7848. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Wang, S.; Yao, Z.; Zhang, W.; Zhang, X.; Zeng, L.; Chen, R. Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat 2020, 2, e12044. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, M.; Wang, L.; Fei, Y.; Wang, S.; Núñez-Delgado, A.; Bokhari, A.; Race, M.; Khataee, A.; Klemeš, J.J.; et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem. Eng. J. 2022, 432, 134104. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.; Choi, W. Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light. Environ. Sci. Technol. 2010, 44, 6849–6854. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, J.; Wu, M.; Chen, J.; Zhao, W.; Tian, Y.; Ding, T.; Zhang, J.; Jiang, Z.; Li, X. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Appl. Catal. B Environ. 2018, 239, 398–407. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Defect Engineering of Air-Treated WO3 and Its Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Performance. J. Phys. Chem. C 2016, 120, 9750–9763. [Google Scholar] [CrossRef]
- Mi, Q.; Zhanaidarova, A.; Brunschwig, B.; Gray, H.B.; Lewis, N.S. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ. Sci. 2012, 5, 5694–5700. [Google Scholar] [CrossRef]
- Wu, J.; Qiao, P.; Li, H.; Ren, L.; Xu, Y.; Tian, G.; Li, M.; Pan, K.; Zhou, W. Surface-oxygen vacancy defect-promoted electron-hole separation of defective tungsten trioxide ultrathin nanosheets and their enhanced solar-driven photocatalytic performance. J. Colloid Interface Sci. 2019, 557, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Ahn, H. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects. Nanoscale 2017, 9, 17788–17793. [Google Scholar] [CrossRef] [PubMed]
- Petruleviciene, M.; Juodkazyte, J.; Parvin, M.; Tereshchenko, A.; Ramanavicius, S.; Karpicz, R.; Samukaite-Bubniene, U.; Ramanavicius, A. Tuning the Photo-Luminescence Properties of WO3 Layers by the Adjustment of Layer Formation Conditions. Materials 2020, 13, 2814. [Google Scholar] [CrossRef]
- Shi, W.; Li, H.; Chen, J.; Lv, X.; Shen, Y. Hierarchical WO3 nanoflakes architecture with enhanced photoelectrochemical activity. Electrochim. Acta 2017, 225, 473–481. [Google Scholar] [CrossRef]
- Solarska, R.; Królikowska, A.; Augustyński, J. Silver Nanoparticle Induced Photocurrent Enhancement at WO3 Photoanodes. Angew. Chem. Int. Ed. 2010, 49, 7980–7983. [Google Scholar] [CrossRef]
- Liu, G.; Han, J.; Zhou, X.; Huang, L.; Zhang, F.; Wang, X.; Ding, C.; Zheng, X.; Han, H.; Li, C. Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. J. Catal. 2013, 307, 148–152. [Google Scholar] [CrossRef]
- Moulzolf, S.; Ding, S.; Lad, R. Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sens. Actuators B Chem. 2001, 77, 375–382. [Google Scholar] [CrossRef]
- Solarska, R.; Królikowska, A.; Augustyński, J. Silver Nanoparticle Induced Photocurrent Enhancement at WO3 Photoanodes. Angew. Chem. Int. Ed. 2010, 122, 8152–8155. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Lin, H.; Xie, Y.; Tong, N.; Lin, J.; Zhang, X.; Zhang, Z.; Wang, X. Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal. Sci. Technol. 2018, 8, 4399–4406. [Google Scholar] [CrossRef]
- Long, R.; English, N. Various 3d-4f spin interactions and field-induced metamagnetism in the Cr5+ system DyCrO4. Phys. Rev. B 2011, 83, 024416. [Google Scholar] [CrossRef]
- Ansari, S.; Khan, M.; Kalathil, S.; Nisar, A.; Lee, J.; Cho, M.H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 2013, 5, 9238–9246. [Google Scholar] [CrossRef] [PubMed]
- Linsebigler, A.; Lu, G. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, Y.; Liu, D.; Meng, M.; Hu, Z.; Jiang, Z. Synergistic Effect of Titanate-Anatase Heterostructure and Hydrogenation-Induced Surface Disorder on Photocatalytic Water Splitting. ACS Catal. 2015, 5, 1708–1716. [Google Scholar] [CrossRef]
- Schmid, M.; Shishkin, M.; Kresse, G.; Napetschnig, E.; Varga, P.; Kulawik, M.; Nilius, N.; Rust, H.-P.; Freund, H.-J. Oxygen-Deficient Line Defects in an Ultrathin Aluminum Oxide Film. Phys. Rev. Lett. 2006, 97, 046101. [Google Scholar] [CrossRef] [PubMed]
- Weinhardt, L.; Blum, M.; Bär, M.; Heske, C.; Cole, B.; Marsen, B.; Miller, E.L. Electronic Surface Level Positions of WO3 Thin Films for Photoelectrochemical Hydrogen Production. J. Phys. Chem. C 2008, 112, 3078–3082. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Petruleviciene, M.; Juodkazyte, J.; Grigucevičienė, A.; Ramanavičius, A. Selectivity of Tungsten Oxide Synthesized by Sol-Gel Method Towards Some Volatile Organic Compounds and Gaseous Materials in a Broad Range of Temperatures. Materials 2020, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Dong, X.; Zhang, S.; Yang, J. Defect-induced ferromagnetism in W18O49 nanowires. J. Alloys Compd. 2020, 818, 152894. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, W.; Lin, J. Improved photoelectrocatalytic performances over electrochemically reduced WO3: Implications of oxygen vacancies. Phys. Chem. Chem. Phys. 2023, 25, 15248–15256. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, M.; Shen, Z.; Yu, J. A nanostructured chromium(III) oxide/tungsten(VI) oxide p–n junction photoanode toward enhanced efficiency for water oxidation. J. Mater. Chem. A 2015, 3, 14046–14053. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, K.; Yu, J.; Jin, J.; Qi, Y.; Li, H.; Hou, X.; Liu, G. Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale 2013, 5, 8375–8383. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Da, P.; Zhang, Y.; Wang, Y.; Lin, X.; Gong, X.; Zheng, G. WO3 Nanoflakes for Enhanced Photoelectrochemical Conversion. ACS Nano 2014, 8, 11770–11777. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Kong, X.; Liu, X.; Tu, L.; Wu, F.; Zhang, Y.; Liu, K.; Zeng, Q.; Zhang, H. Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 2013, 5, 8084–8089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ning, F.; Xu, S.; Zhou, L.; Shao, M.; Wei, M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim. Acta 2018, 274, 217–223. [Google Scholar] [CrossRef]
- Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R.C.; Qian, F.; Zhang, J.Z.; Li, Y. Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2009, 9, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Wolcott, A.; Smith, W.; Kuykendall, T.; Zhao, Y.; Zhang, J.Z. Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small 2009, 5, 104–111. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W.; et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2019, 245, 87–99. [Google Scholar] [CrossRef]
- Rahimnejad, S.; He, J.; Pan, F.; Lee, X.; Chen, W.; Wu, K.; Xu, G.Q. Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Mater. Res. Express 2014, 1, 045044. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; He, H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl. Catal. B Environ. 2016, 184, 28–34. [Google Scholar] [CrossRef]
Total | OL | OOH | OH2O | ||
---|---|---|---|---|---|
Area | WO3 | 84,376.662 | 72,615.110 | 10,022.600 | 1738.952 |
WO3−x | 174,771.533 | 142,919.300 | 26,817.080 | 5035.153 | |
bulk-WO3−x | 78,938.520 | 64,014.520 | 8907.012 | 6016.988 | |
Percentage | WO3 | 100% | 86.1% | 11.8% | 2.1% |
WO3−x | 100% | 81.8% | 15.3% | 2.9% | |
bulk-WO3−x | 100% | 81.1% | 11.3% | 7.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wei, Q.; Li, G.; Wei, F.; Hu, Z. A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation. Nanomaterials 2024, 14, 923. https://doi.org/10.3390/nano14110923
Guo W, Wei Q, Li G, Wei F, Hu Z. A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation. Nanomaterials. 2024; 14(11):923. https://doi.org/10.3390/nano14110923
Chicago/Turabian StyleGuo, Weiqing, Qianhui Wei, Gangrong Li, Feng Wei, and Zhuofeng Hu. 2024. "A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation" Nanomaterials 14, no. 11: 923. https://doi.org/10.3390/nano14110923
APA StyleGuo, W., Wei, Q., Li, G., Wei, F., & Hu, Z. (2024). A Bulk Oxygen Vacancy Dominating WO3−x Photocatalyst for Carbamazepine Degradation. Nanomaterials, 14(11), 923. https://doi.org/10.3390/nano14110923