A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Superlattice Potential Distribution
3.2. Mini-Band Structure at Different Duty Cycles
3.3. Mini-Band Structure at Different Superlattice Periods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lisi, S.; Lu, X.; Benschop, T.; de Jong, T.A.; Stepanov, P.; Duran, J.R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; et al. Observation of Flat Bands in Twisted Bilayer Graphene. Nat. Phys. 2021, 17, 189–193. [Google Scholar] [CrossRef]
- Utama, M.I.B.; Koch, R.J.; Lee, K.; Leconte, N.; Li, H.; Zhao, S.; Jiang, L.; Zhu, J.; Watanabe, K.; Taniguchi, T.; et al. Visualization of the Flat Electronic Band in Twisted Bilayer Graphene near the Magic Angle Twist. Nat. Phys. 2021, 17, 184–188. [Google Scholar] [CrossRef]
- Mao, J.; Milovanović, S.P.; Anđelković, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; et al. Evidence of Flat Bands and Correlated States in Buckled Graphene Superlattices. Nature 2020, 584, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Balents, L.; Dean, C.R.; Efetov, D.K.; Young, A.F. Superconductivity and Strong Correlations in Moiré Flat Bands. Nat. Phys. 2020, 16, 725–733. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M.H.; Mao, N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T.; et al. Unconventional Ferroelectricity in Moiré Heterostructures. Nature 2020, 588, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Polshyn, H.; Zhu, J.; Kumar, M.A.; Zhang, Y.; Yang, F.; Tschirhart, C.L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A.H.; et al. Electrical Switching of Magnetic Order in an Orbital Chern Insulator. Nature 2020, 588, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Tunable Correlated Chern Insulator and Ferromagnetism in a Moiré Superlattice. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Geisenhof, F.R.; Winterer, F.; Seiler, A.M.; Lenz, J.; Xu, T.; Zhang, F.; Weitz, R.T. Quantum Anomalous Hall Octet Driven by Orbital Magnetism in Bilayer Graphene. Nature 2021, 598, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Palau, R.; Zhang, C.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C.R. Twistable Electronics with Dynamically Rotatable Heterostructures. Science 2018, 361, 690–693. [Google Scholar] [CrossRef]
- Hu, C.; Wu, T.; Huang, X.; Dong, Y.; Chen, J.; Zhang, Z.; Lyu, B.; Ma, S.; Watanabe, K.; Taniguchi, T.; et al. In-Situ Twistable Bilayer Graphene. Sci. Rep. 2022, 12, 204. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Yin, J.; Xu, S.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; Novoselov, K.S.; Mishchenko, A. In Situ Manipulation of van Der Waals Heterostructures for Twistronics. Sci. Adv. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vogl, M.; Rodriguez-Vega, M.; Fiete, G.A. Floquet Engineering of Interlayer Couplings: Tuning the Magic Angle of Twisted Bilayer Graphene at the Exit of a Waveguide. Phys. Rev. B 2020, 101, 241408. [Google Scholar] [CrossRef]
- Luo, S.; Zhou, X.; Tang, X.; Li, J.; Wei, D.; Tai, G.; Chen, Z.; Liao, T.; Fu, J.; Wei, D.; et al. Microconformal Electrode-Dielectric Integration for Flexible Ultrasensitive Robotic Tactile Sensing. Nano Energy 2021, 80, 105580. [Google Scholar] [CrossRef]
- Zhu, B.; Niu, Z.; Wang, H.; Leow, W.R.; Wang, H.; Li, Y.; Zheng, L.; Wei, J.; Huo, F.; Chen, X. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small 2014, 10, 3625–3631. [Google Scholar] [CrossRef]
- Forsythe, C.; Zhou, X.; Watanabe, K.; Taniguchi, T.; Pasupathy, A.; Moon, P.; Koshino, M.; Kim, P.; Dean, C.R. Band Structure Engineering of 2D Materials Using Patterned Dielectric Superlattices. Nat. Nanotechnol. 2018, 13, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yang, L.; Son, Y.W.; Cohen, M.L.; Louie, S.G. Anisotropic Behaviours of Massless Dirac Fermions in Graphene under Periodic Potentials. Nat. Phys. 2008, 4, 213–217. [Google Scholar] [CrossRef]
- Barbillon, G. Sub-30 nm Plasmonic Nanostructures by Soft UV Nanoimprint Lithography. In Updates in Advanced Lithography; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Ying, H.; Chen, J.; Zang, Q.; Dong, J.; Zhang, H.; Liu, Y.; Liu, C. A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating. Nanomaterials 2024, 14, 1019. https://doi.org/10.3390/nano14121019
Wei B, Ying H, Chen J, Zang Q, Dong J, Zhang H, Liu Y, Liu C. A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating. Nanomaterials. 2024; 14(12):1019. https://doi.org/10.3390/nano14121019
Chicago/Turabian StyleWei, Binbin, Haosong Ying, Junrong Chen, Qing Zang, Jiduo Dong, Hao Zhang, Yang Liu, and Chunheng Liu. 2024. "A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating" Nanomaterials 14, no. 12: 1019. https://doi.org/10.3390/nano14121019
APA StyleWei, B., Ying, H., Chen, J., Zang, Q., Dong, J., Zhang, H., Liu, Y., & Liu, C. (2024). A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating. Nanomaterials, 14(12), 1019. https://doi.org/10.3390/nano14121019