Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of WOFs
2.3. Preparation of g-C3N4
2.4. Preparation of WOF/g-C3N4 Composites
2.5. Characterization Techniques
2.6. Fluorimetric Determination of the Ability to Generate HO•
2.7. Photocatalytic Experiments
2.8. Determination of Residual Concentration of CLO
2.9. In-Vitro Ecotoxicological Assessment with the Microtox Bioassay
2.10. Sample Precocnetration with Solid-Phase Extraction (SPE)
2.11. Detection and Tentative Identification of CLO’s TPs with UHPLC-LTQ-Orbitrap MS
2.12. In-Silico Assessment of Ecotoxicologiccal Parameters for CLO and Its TPs
3. Results and Discussion
3.1. Material Characterization
3.2. Study of CLO Degradation Kinetics and HO• Generation Ability of the Synthesized Photocatalysts
3.3. In-Vitro Assessment of Ecotoxicity Changes
3.4. Detection and Identification of CLO’s TPs
3.5. In-Silico Evluation of the Ecotoxicity of CLO and Its TPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intisar, A.; Ramzan, A.; Hafeez, S.; Hussain, N.; Irfan, M.; Shakeel, N.; Gill, K.A.; Iqbal, A.; Janczarek, M.; Jesionowski, T. Adsorptive and Photocatalytic Degradation Potential of Porous Polymeric Materials for Removal of Pesticides, Pharmaceuticals, and Dyes-Based Emerging Contaminants from Water. Chemosphere 2023, 336, 139203. [Google Scholar] [CrossRef] [PubMed]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil. Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Simonovic, S.P. World Water Dynamics: Global Modeling of Water Resources. J. Environ. Manag. 2002, 66, 249–267. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Astuti, M.P.; Notodarmojo, S.; Priadi, C.R.; Padhye, L.P. Contaminants of Emerging Concerns (CECs) in a Municipal Wastewater Treatment Plant in Indonesia. Environ. Sci. Pollut. Res. 2023, 30, 21512–21532. [Google Scholar] [CrossRef]
- Manickavasagam, G.; He, C.; Lin, K.-Y.A.; Saaid, M.; Oh, W.-D. Recent Advances in Catalyst Design, Performance, and Challenges of Metal-Heteroatom-Co-Doped Biochar as Peroxymonosulfate Activator for Environmental Remediation. Environ. Res. 2024, 252, 118919. [Google Scholar] [CrossRef]
- Liu, S.S.; You, W.D.; Chen, C.E.; Wang, X.Y.; Yang, B.; Ying, G.G. Occurrence, Fate and Ecological Risks of 90 Typical Emerging Contaminants in Full-Scale Textile Wastewater Treatment Plants from a Large Industrial Park in Guangxi, Southwest China. J. Hazard. Mater. 2023, 449, 131048. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An Overview of Homogeneous and Heterogeneous Photocatalysis Applications for the Removal of Pharmaceutical Compounds from Real or Synthetic Hospital Wastewaters under Lab or Pilot Scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef]
- Lykos, C.; Tsalpatouros, K.; Fragkos, G.; Konstantinou, I. Synthesis, Characterization, and Application of Cu-Substituted LaNiO3 Perovskites as Photocatalysts and/or Catalysts for Persulfate Activation towards Pollutant Removal. Chemosphere 2024, 352, 141477. [Google Scholar] [CrossRef]
- Mukherjee, J.; Lodh, B.K.; Sharma, R.; Mahata, N.; Shah, M.P.; Mandal, S.; Ghanta, S.; Bhunia, B. Advanced Oxidation Process for the Treatment of Industrial Wastewater: A Review on Strategies, Mechanisms, Bottlenecks and Prospects. Chemosphere 2023, 345, 140473. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl. Catal. B 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public. Health 2020, 17, 170. [Google Scholar] [CrossRef] [PubMed]
- Rapti, I.; Kosma, C.; Albanis, T.; Konstantinou, I. Solar Photocatalytic Degradation of Inherent Pharmaceutical Residues in Real Hospital WWTP Effluents Using Titanium Dioxide on a CPC Pilot Scale Reactor. Catal. Today 2023, 423, 113884. [Google Scholar] [CrossRef]
- Cardoso, I.M.F.; Cardoso, R.M.F.; Esteves da Silva, J.C.G. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials 2021, 11, 2045. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, Y.; Zhao, X. Combination of Photocatalytic and Electrochemical Degradation of Organic Pollutants from Water. Curr. Opin. Green. Sustain. Chem. 2017, 6, 78–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, B.; Chen, H.; Yuan, R. Heterogeneous Photocatalytic Oxidation for the Removal of Organophosphorus Pollutants from Aqueous Solutions: A Review. Sci. Total Environ. 2023, 856, 159048. [Google Scholar] [CrossRef]
- Zhang, Y.; Hawboldt, K.; Zhang, L.; Lu, J.; Chang, L.; Dwyer, A. Carbonaceous Nanomaterial-TiO2 Heterojunctions for Visible-Light-Driven Photocatalytic Degradation of Aqueous Organic Pollutants. Appl. Catal. A Gen. 2022, 630, 118460. [Google Scholar] [CrossRef]
- Wang, L.; Wang, K.; He, T.; Zhao, Y.; Song, H.; Wang, H. Graphitic Carbon Nitride-Based Photocatalytic Materials: Preparation Strategy and Application. ACS Sustain. Chem. Eng. 2020, 8, 16048–16085. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- John, A.; Rajan, M.S.; Thomas, J. Carbon Nitride-Based Photocatalysts for the Mitigation of Water Pollution Engendered by Pharmaceutical Compounds. Environ. Sci. Pollut. Res. 2021, 28, 24992–25013. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Viljoen, E.L. WO3-Based Catalysts for Photocatalytic and Photoelectrocatalytic Removal of Organic Pollutants from Water—A Review. J. Water Process Eng. 2021, 40, 101930. [Google Scholar] [CrossRef]
- Xu, B.; Ahmed, M.B.; Zhou, J.L.; Altaee, A.; Xu, G.; Wu, M. Graphitic Carbon Nitride Based Nanocomposites for the Photocatalysis of Organic Contaminants under Visible Irradiation: Progress, Limitations and Future Directions. Sci. Total Environ. 2018, 633, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Lykos, C.; Sioulas, S.; Konstantinou, I. g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions. Catalysts 2023, 13, 254. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Graphitic Carbon Nitride-Based Catalysts and Their Applications: A Review. Nano-Struct. Nano-Objects 2020, 24, 100577. [Google Scholar] [CrossRef]
- Bairamis, F.; Rapti, I.; Konstantinou, I. g-C3N4 Based Z-Scheme Photocatalysts for Environmental Pollutants Removal. Curr. Opin. Green. Sustain. Chem. 2023, 40, 100749. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, X.; Gao, B.; Zou, W.; Zheng, Y.; Yang, Y.; Zhang, Y.; Tong, Q.; Dong, L. Synergistic Adsorption-Photocatalysis Processes of Graphitic Carbon Nitrate (g-C3N4) for Contaminant Removal: Kinetics, Models, and Mechanisms. Chem. Eng. J. 2019, 375, 122019. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Cao, Y.; Luo, M.; Feng, Z.; Yang, W.; Liu, K.; Cao, H.; Yan, H. Pt@Cu2O/WO3 Composite Photocatalyst for Enhanced Photocatalytic Water Oxidation Performance. Appl. Catal. B 2018, 237, 309–317. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef] [PubMed]
- Lincho, J.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured Photocatalysts for the Abatement of Contaminants by Photocatalysis and Photocatalytic Ozonation: An Overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.B.; Nabi, G.; Rafique, M.; Khalid, N.R. Nanostructured-Based WO3 Photocatalysts: Recent Development, Activity Enhancement, Perspectives and Applications for Wastewater Treatment. Int. J. Environ. Sci. Technol. 2017, 14, 2519–2542. [Google Scholar] [CrossRef]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, Optimized Morphologies, and Advanced Strategies for Photocatalytic Applications of WO3 Based Photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef] [PubMed]
- Weng, B.; Wu, J.; Zhang, N.; Xu, Y.J. Observing the Role of Graphene in Boosting the Two-Electron Reduction of Oxygen in Graphene-Wo3 Nanorod Photocatalysts. Langmuir 2014, 30, 5574–5584. [Google Scholar] [CrossRef]
- Molaei, M.J. Graphitic Carbon Nitride (g-C3N4) Synthesis and Heterostructures, Principles, Mechanisms, and Recent Advances: A Critical Review. Int. J. Hydrogen Energy 2023, 48, 32708–32728. [Google Scholar] [CrossRef]
- Ruan, D.; Kim, S.; Fujitsuka, M.; Majima, T. Defects Rich g-C3N4 with Mesoporous Structure for Efficient Photocatalytic H2 Production under Visible Light Irradiation. Appl. Catal. B 2018, 238, 638–646. [Google Scholar] [CrossRef]
- Swedha, M.; Balasurya, S.; Syed, A.; Das, A.; Sudheer Khan, S. Continuous Photocatalysis via Z-Scheme Based Nanocatalyst System for Environmental Remediation of Pharmaceutically Active Compound: Modification, Reaction Site, Defect Engineering and Challenges on the Nanocatalyst. J. Mol. Liq. 2022, 353, 118745. [Google Scholar] [CrossRef]
- Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022, 12, 294. [Google Scholar] [CrossRef]
- Kumar, A.; Raizada, P.; Singh, P.; Saini, R.V.; Saini, A.K.; Hosseini-Bandegharaei, A. Perspective and Status of Polymeric Graphitic Carbon Nitride Based Z-Scheme Photocatalytic Systems for Sustainable Photocatalytic Water Purification. Chem. Eng. J. 2020, 391, 123496. [Google Scholar] [CrossRef]
- Papamichail, P.; Nannou, C.; Giannakoudakis, D.A.; Bikiaris, N.D.; Papoulia, C.; Pavlidou, E.; Lambropoulou, D.; Samanidou, V.; Deliyanni, E. Maximization of the Photocatalytic Degradation of Diclofenac Using Polymeric g-C3N4 by Tuning the Precursor and the Synthetic Protocol. Catal. Today 2023, 418, 114075. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W.K. In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401. [Google Scholar] [CrossRef] [PubMed]
- Bairamis, F.; Konstantinou, I. WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media. Catalysts 2021, 11, 792. [Google Scholar] [CrossRef]
- Pappa, A.; Bairamis, F.; Konstantinou, I. Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts. Photochem 2023, 3, 442–460. [Google Scholar] [CrossRef]
- Orčić, S.M.; Čelić, T.V.; Purać, J.S.; Vukašinović, E.L.; Kojić, D.K. Acute Toxicity of Sublethal Concentrations of Thiacloprid and Clothianidin to Immune Response and Oxidative Status of Honey Bees. Apidologie 2022, 53, 50. [Google Scholar] [CrossRef]
- Ritchie, E.E.; Maisonneuve, F.; Scroggins, R.P.; Princz, J.I. Lethal and Sublethal Toxicity of Thiamethoxam and Clothianidin Commercial Formulations to Soil Invertebrates in a Natural Soil. Environ. Toxicol. Chem. 2019, 38, 2111–2120. [Google Scholar] [CrossRef]
- Todey, S.A.; Fallon, A.M.; Arnold, W.A. Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity. Environ. Toxicol. Chem. 2018, 37, 2797–2809. [Google Scholar] [CrossRef] [PubMed]
- Main, A.R.; Headley, J.V.; Peru, K.M.; Michel, N.L.; Cessna, A.J.; Morrissey, C.A. Widespread Use and Frequent Detection of Neonicotinoid Insecticides in Wetlands of Canada’s Prairie Pothole Region. PLoS ONE 2014, 9, e92821. [Google Scholar] [CrossRef]
- Huseth, A.S.; Groves, R.L. Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem. PLoS ONE 2014, 9, e97081. [Google Scholar] [CrossRef]
- Sadaria, A.M.; Supowit, S.D.; Halden, R.U. Mass Balance Assessment for Six Neonicotinoid Insecticides during Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater. Environ. Sci. Technol. 2016, 50, 6199–6206. [Google Scholar] [CrossRef]
- Jiang, J.; Ou-Yang, L.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Dependence of Electronic Structure of g-C3N4 on the Layer Number of Its Nanosheets: A Study by Raman Spectroscopy Coupled with First-Principles Calculations. Carbon 2014, 80, 213–221. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and Misuse of the Kubelka-Munk Function to Obtain the Band Gap Energy from Diffuse Reflectance Measurements. Solid. State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Liu, J. Effect of Phosphorus Doping on Electronic Structure and Photocatalytic Performance of g-C3N4: Insights from Hybrid Density Functional Calculation. J. Alloys Compd. 2016, 672, 271–276. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X.; Hao, H.; Gan, W. Facile Synthesis 3D Flower-like Ag@WO3 Nanostructures and Applications in Solar-Light Photocatalysis. J. Alloys Compd. 2018, 757, 134–141. [Google Scholar] [CrossRef]
- Fotiou, D.; Lykos, C.; Konstantinou, I. Photocatalytic Removal of the Antidepressant Fluoxetine from Aqueous Media Using TiO2 P25 and g-C3N4 Catalysts. J. Environ. Chem. Eng. 2024, 12, 111677. [Google Scholar] [CrossRef]
- Miserli, K.; Kogola, D.; Paraschoudi, I.; Konstantinou, I. Activation of Persulfate by Biochar for the Degradation of Phenolic Compounds in Aqueous Systems. Chem. Eng. J. Adv. 2022, 9, 100201. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Liu, C.; Chen, C.; Xin, X. Porous NiO-WO3 Heterojunction Nanofibers Fabricated by Electrospinning with Enhanced Gas Sensing Properties. RSC Adv. 2017, 7, 40499–40509. [Google Scholar] [CrossRef]
- Hromádko, L.; Motola, M.; Čičmancová, V.; Bulánek, R.; Macak, J.M. Facile Synthesis of WO3 Fibers via Centrifugal Spinning as an Efficient UV- and VIS-Light-Driven Photocatalyst. Ceram. Int. 2021, 47, 35361–35365. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Z.; Chen, Z.; Jin, M.; Meng, Q.; Yuan, M.; Wang, X.; Liu, J.M.; Zhou, G. Constructing Novel WO3/Fe(III) Nanofibers Photocatalysts with Enhanced Visible-Light-Driven Photocatalytic Activity via Interfacial Charge Transfer Effect. Mater. Today Energy 2017, 3, 45–52. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Santala, E.; Heikkilä, M.; Kemell, M.; Nikitin, T.; Khriachtchev, L.; Räsänen, M.; Ritala, M.; Leskelä, M. Thermal Study on Electrospun Polyvinylpyrrolidone/Ammonium Metatungstate Nanofibers: Optimising the Annealing Conditions for Obtaining WO3 Nanofibers. J. Therm. Anal. Calorim. 2011, 105, 73–81. [Google Scholar] [CrossRef]
- Zhang, J.; Leng, D.; Zhang, L.; Li, G.; Ma, F.; Gao, J.; Lu, H.; Zhu, B. Porosity and Oxygen Vacancy Engineering of Mesoporous WO3 Nanofibers for Fast and Sensitive Low-Temperature NO2 Sensing. J. Alloys Compd. 2021, 853, 157339. [Google Scholar] [CrossRef]
- Ghosh, P.; Manikandan, M.; Sen, S.; Devi, P.S. Some Interesting Insights into the Acetone Sensing Characteristics of Monoclinic WO3. Mater. Adv. 2023, 4, 1146–1160. [Google Scholar] [CrossRef]
- Morais, P.V.; Suman, P.H.; Silva, R.A.; Orlandi, M.O. High Gas Sensor Performance of WO3 Nanofibers Prepared by Electrospinning. J. Alloys Compd. 2021, 864, 158745. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y. Synthesis, Growth Kinetics and Ultra-Sensitive Performance of Electrospun WO3 Nanofibers for NO2 Detection. Appl. Surf. Sci. 2023, 608, 155112. [Google Scholar] [CrossRef]
- Yang, B.; To, D.T.H.; Resendiz Mendoza, E.; Myung, N.V. Achieving One Part Per Billion Hydrogen Sulfide (H2S) Level Detection through Optimizing Composition and Crystallinity of Gold-Decorated Tungsten Trioxide (Au-WO3) Nanofibers. ACS Sens. 2024, 9, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Tran, T.T.; Milam-Guerrero, J.A.; To, D.T.; Stahovich, T.; Myung, N.V. Enhancing Gas Sensing Performance of Tungsten Trioxide (WO3) Nanofibers through Diameter and Crystallinity Control. Sens. Actuators Rep. 2024, 7, 100182. [Google Scholar] [CrossRef]
- Koutsouroubi, E.D.; Vamvasakis, I.; Drivas, C.; Kennou, S.; Armatas, G.S. Photochemical Deposition of SnS2 on Graphitic Carbon Nitride for Photocatalytic Aqueous Cr(VI) Reduction. Chem. Eng. J. Adv. 2022, 9, 100224. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wu, F.; Cai, J.; Luo, J.; Zhou, E.; Niu, Y. Novel Fumed Silica/g-C3N4 Composites for Highly Efficient Removal of Rhodamine B under Visible Light Emitting Diodes Light Irradiation. Environ. Prog. Sustain. Energy 2022, 41, e13714. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Zhang, R.; Zhang, Y.; Chen, L. Photocatalytic Oxidation Degradability of Ammonia–Nitrogen and Ni/Co Ammonia Complexes in Ternary Precursor Wastewater by Constructing MoS2/g-C3N4 Heterojunction: Performance and Mechanism. Sep. Purif. Technol. 2024, 344, 127162. [Google Scholar] [CrossRef]
- Taha, M.; Khalid, A.; Elmahgary, M.G.; Medany, S.S.; Attia, Y.A. Fabricating a 3D Floating Porous PDMS—Ag/AgBr Decorated g-C3N4 Nanocomposite Sponge as a Re-Usable Visible Light Photocatalyst. Sci. Rep. 2024, 14, 4184. [Google Scholar] [CrossRef] [PubMed]
- Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Athanasekou, C.P.; Dimotikali, D.; Trapalis, C. Chemical vs Thermal Exfoliation of g-C3N4 for NOx Removal under Visible Light Irradiation. Appl. Catal. B 2018, 239, 16–26. [Google Scholar] [CrossRef]
- Todorova, N.; Papailias, I.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Dallas, P.; Edelmannová, M.; Reli, M.; Kočí, K.; Trapalis, C. Photocatalytic H2 evolution, CO2 reduction, and Noxoxidation by Highly Exfoliated g-C3N4. Catalysts 2020, 10, 1147. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; An, X.; Zhao, J.; Bao, Y.; Hou, L. an Exfoliation Method Matters: The Microstructure-Dependent Photoactivity of g-C3N4 Nanosheets for Water Purification. J. Hazard. Mater. 2022, 424, 127424. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, K.I.; Motoyoshi, R.; Matsushita, N.; Okada, K. Preparation of Graphitic Carbon Nitride (g-C3N4)/WO3 Composites and Enhanced Visible-Light-Driven Photodegradation of Acetaldehyde Gas. J. Hazard. Mater. 2013, 260, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.G. X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129–131. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of Thiourea into Carbon Nitride Semiconductors as Visible Light Photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Zuo, Y.; Kang, S. Facile Preparation of Z-Scheme WO3/g-C3N4 Composite Photocatalyst with Enhanced Photocatalytic Performance under Visible Light. Appl. Surf. Sci. 2017, 391, 202–210. [Google Scholar] [CrossRef]
- Sungpanich, J.; Thongtem, T.; Thongtem, S. Fabrication of WO3 Nanofibers by High Voltage Electrospinning. Mater. Lett. 2011, 65, 3000–3004. [Google Scholar] [CrossRef]
- Dursun, S.; Koyuncu, S.N.; Kaya, İ.C.; Kaya, G.G.; Kalem, V.; Akyildiz, H. Production of CuO–WO3 Hybrids and Their Dye Removal Capacity/Performance from Wastewater by Adsorption/Photocatalysis. J. Water Process Eng. 2020, 36, 101390. [Google Scholar] [CrossRef]
- Odhiambo, V.O.; Ongarbayeva, A.; Kéri, O.; Simon, L.; Szilágyi, I.M. Synthesis of TiO2/WO3 Composite Nanofibers by a Water-Based Electrospinning Process and Their Application in Photocatalysis. Nanomaterials 2020, 10, 882. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Yan, C.; Yang, Z.; Zhu, G.; Gao, J.; Yin, F.; Wang, C. Fabrication of Conductive Graphene Oxide-WO3 Composite Nanofibers by Electrospinning and Their Enhanced Acetone Gas Sensing Properties. Sens. Actuators B Chem. 2018, 264, 128–138. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Liu, B.; Huang, Z.; Zhu, L.; Wang, X. Three-Dimensional Porous La(OH)3/g-C3N4 Adsorption-Photocatalytic Synergistic Removal of Tetracycline. Environ. Sci. Pollut. Res. 2024, 31, 22158–22170. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Q.; Wang, W. Construction of a Crossed-Layer-Structure MoS2/g-C3N4 Heterojunction with Enhanced Photocatalytic Performance. RSC Adv. 2017, 7, 6131–6139. [Google Scholar] [CrossRef]
- Yousaf, Z.; Sajjad, S.; Leghari, S.A.K.; Noor, S.; Kanwal, A.; Bhatti, S.H.; Mahmoud, K.H.; El-Bahy, Z.M. Influence of Integrated Nitrogen Functionalities in Nitrogen Doped Graphene Modified WO3 Functional Visible Photocatalyst. J. Environ. Chem. Eng. 2021, 9, 106746. [Google Scholar] [CrossRef]
- Ezhilan, M.; JBB, A.J.; Babu, K.J.; Rayappan, J.B.B. Hierarchically Connected Electrospun WO3 Nanowires—An Acetaldehyde Sensor. J. Alloys Compd. 2021, 863, 158407. [Google Scholar] [CrossRef]
- Odhiambo, V.O.; Mustafa, C.R.M.; Thong, L.B.; Kónya, Z.; Cserháti, C.; Erdélyi, Z.; Lukác, I.E.; Szilágyi, I.M. Preparation of TiO2/WO3/C/N Composite Nanofibers by Electrospinning Using Precursors Soluble in Water and Their Photocatalytic Activity in Visible Light. Nanomaterials 2021, 11, 351. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; He, H. Enhanced Photocatalytic Oxidation of NO over g-C3N4-TiO2 under UV and Visible Light. Appl. Catal. B 2016, 184, 28–34. [Google Scholar] [CrossRef]
- Jiménez-Calvo, P.; Marchal, C.; Cottineau, T.; Caps, V.; Keller, V. Influence of the Gas Atmosphere during the Synthesis of g-C3N4 for Enhanced Photocatalytic H2 Production from Water on Au/g-C3N4 Composites. J. Mater. Chem. A Mater. 2019, 7, 14849–14863. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Chen, Z.; Li, K.; Sun, H.; Wang, J.; Lv, K.; Cong, S.; Zhao, Z. Tailoring the Coordination Microenvironment of Single-Atom W for Efficient Photocatalytic CO2 Reduction. Appl. Catal. B 2024, 350, 123911. [Google Scholar] [CrossRef]
- Abid, M.Z.; Tanveer, A.; Rafiq, K.; Rauf, A.; Jin, R.; Hussain, E. Proceeding of Catalytic Water Splitting on Cu/Ce@g-C3N4 Photocatalysts: An Exceptional Approach for Sunlight-Driven Hydrogen Generation. Nanoscale 2024, 16, 7154–7166. [Google Scholar] [CrossRef]
- Gogoi, D.; Shah, A.K.; Qureshi, M.; Golder, A.K.; Peela, N.R. Silver Grafted Graphitic-Carbon Nitride Ternary Hetero-Junction Ag/g-C3N4(Urea)-g-C3N4(Thiourea) with Efficient Charge Transfer for Enhanced Visible-Light Photocatalytic Green H2 Production. Appl. Surf. Sci. 2021, 558, 149900. [Google Scholar] [CrossRef]
- Qian, H.; Lu, J.; Ge, L.; Zhang, Z.; Zhang, J.; Xu, Z.; Wang, S.; Yu, T.; Lu, H.; Hu, K.; et al. One-Pot Construction of Porous WO3/g-C3N4 Nanotubes of Photocatalyst for Fast and Boosted Photodegradation of Rhodamine B and Tetracycline. J. Electron. Mater. 2023, 52, 3947–3962. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, X.; Li, Y.; Jin, Z. Performance of WO3/g-C3N4 Heterojunction Composite Boosting with NiS for Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2020, 499, 143862. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Zhao, J.; Guo, L.; Osterloh, F.E. High Alkalinity Boosts Visible Light Driven H2 Evolution Activity of g-C3N4 in Aqueous Methanol. Chem. Commun. 2014, 50, 15521–15524. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Y.; Meng, S.; Fu, X. Study on the Separation Mechanisms of Photogenerated Electrons and Holes for Composite Photocatalysts g-C3N4-WO3. Appl. Catal. B 2014, 150–151, 564–573. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous Graphitic Carbon Nitride Synthesized via Directly Polymerization of Urea for Efficient Sunlight-Driven Photocatalytic Hydrogen Production Received. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef]
- Zwane, S.; Dlamini, D.S.; Mamba, B.B.; Kuvarega, A.T. Evaluation of the Photodegradation of Pharmaceuticals and Dyes in Water Using a Highly Visible Light-Active Graphitic Carbon Nitride Modified with Tungsten Oxide. Inorg. Chem. Commun. 2023, 151, 143862. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Pham, T.T.; Nguyen-Phu, H.; Shin, E.W. The Effect of Graphitic Carbon Nitride Precursors on the Photocatalytic Dye Degradation of Water-Dispersible Graphitic Carbon Nitride Photocatalysts. Appl. Surf. Sci. 2021, 537, 148027. [Google Scholar] [CrossRef]
- He, B.; Du, Y.; Feng, Y.; Du, M.; Wang, J.; Qu, J.; Liu, Y.; Jiang, N.; Wang, J.J.; Sun, X.Y. Fabrication of Novel Ternary Direct Z-Scheme + isotype Heterojunction Photocatalyst g-C3N4/g-C3N4/BiOBr with Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2020, 506, 145031. [Google Scholar] [CrossRef]
- Le, Z.; Xiong, C.; Gong, J.; Wu, X.; Pan, T.; Chen, Z.; Xie, Z. Self-Cleaning Isotype g-C3N4 Heterojunction for Efficient Photocatalytic Reduction of Hexavalent Uranium under Visible Light. Environ. Pollut. 2020, 260, 114070. [Google Scholar] [CrossRef]
- Ismael, M.; Wu, Y.; Taffa, D.H.; Bottke, P.; Wark, M. Graphitic Carbon Nitride Synthesized by Simple Pyrolysis: Role of Precursor in Photocatalytic Hydrogen Production. New J. Chem. 2019, 43, 6909–6920. [Google Scholar] [CrossRef]
- Phang, S.J.; Goh, J.M.; Tan, L.L.; Lee, W.P.C.; Ong, W.J.; Chai, S.P. Metal-Free n/n–Junctioned Graphitic Carbon Nitride (g-C3N4): A Study to Elucidate Its Charge Transfer Mechanism and Application for Environmental Remediation. Environ. Sci. Pollut. Res. 2021, 28, 4388–4403. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Y.; Rabeah, J.; Brückner, A.; Cao, H. Visible-Light Photocatalytic Ozonation Using Graphitic C3N4 Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Acc. Chem. Res. 2020, 53, 1024–1033. [Google Scholar] [CrossRef]
- de la Flor, M.P.; Camarillo, R.; Martínez, F.; Jiménez, C.; Quiles, R.; Rincón, J. Synthesis and Characterization of TiO2/CNT/Pd: An Effective Sunlight Photocatalyst for Neonicotinoids Degradation. J. Environ. Chem. Eng. 2021, 9, 106278. [Google Scholar] [CrossRef]
- Tavakoli Joorabi, F.; Kamali, M.; Sheibani, S. Effect of Aqueous Inorganic Anions on the Photocatalytic Activity of CuO–Cu2O Nanocomposite on MB and MO Dyes Degradation. Mater. Sci. Semicond. Process 2022, 139, 106335. [Google Scholar] [CrossRef]
- Gao, X.; Guo, Q.; Tang, G.; Peng, W.; Luo, Y.; He, D. Effects of Inorganic Ions on the Photocatalytic Degradation of Carbamazepine. J. Water Reuse Desalination 2019, 9, 301–309. [Google Scholar] [CrossRef]
- Efthymiou, C.; Boti, V.; Konstantinou, I.; Albanis, T. Aqueous Fate of Furaltadone: Kinetics, High-Resolution Mass Spectrometry—Based Elucidation and Toxicity Assessment of Photoproducts. Sci. Total Environ. 2024, 919, 170848. [Google Scholar] [CrossRef]
- Vione, D. A Model Assessment of the Occurrence and Reactivity of the Nitrating/Nitrosating Agent Nitrogen Dioxide (•NO2) in Sunlit Natural Waters. Molecules 2022, 27, 4855. [Google Scholar] [CrossRef]
- Mohtar, S.S.; Aziz, F.; Nor, A.R.M.; Mohammed, A.M.; Mhamad, S.A.; Jaafar, J.; Yusof, N.; Salleh, W.N.W.; Ismail, A.F. Photocatalytic Degradation of Humic Acid Using a Novel Visible-Light Active α-Fe2O3/NiS2 Composite Photocatalyst. J. Environ. Chem. Eng. 2021, 9, 105682. [Google Scholar] [CrossRef]
- Wierzyńska, E.; Korytkowska, K.; Kazimierczuk, K.; Łęcki, T.; Zarębska, K.; Korona, K.P.; Pisarek, M.; Furtak, B.; Skompska, M. The Role of Boron Dopant in the Improvement of Electron Transfer in g-C3N4 Photocatalyst. J. Phys. Chem. C 2024, 128, 894–907. [Google Scholar] [CrossRef]
- Pérez-Torres, A.F.; Hernández-Barreto, D.F.; Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C.; da Silva, E.A.; Alves, M.d.C.M.; Morais, J.; Hernandez, Y.; Cortés, M.T.; et al. Sulfur-Doped g-C3N4 Heterojunctions for Efficient Visible Light Degradation of Methylene Blue. ACS Omega 2023, 8, 47821–47834. [Google Scholar] [CrossRef]
- Luo, W.; Wang, R.; Zhao, J.; Zhai, H. Efficiently Photocatalytic Activities of Novel Metal-Free g-C3N4 Under Simulated Solar Irradiation: Removal Efficiency, Influence Factors, and Reaction Mechanism. Water Air Soil. Pollut. 2024, 235, 53. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Mantzavinos, D.; Frontistis, Z. Heat-Activated Persulfate for the Degradation of Micropollutants in Water: A Comprehensive Review and Future Perspectives. J. Environ. Manag. 2022, 318, 115568. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Huang, Y.; Su, L.; Li, C.; Zhao, Y.H.; Martyniuk, C.J. Comparative Analysis on the Photolysis Kinetics of Four Neonicotinoid Pesticides and Their Photo-Induced Toxicity to Vibrio Fischeri: Pathway and Toxic Mechanism. Chemosphere 2022, 287, 132303. [Google Scholar] [CrossRef]
- Kralj, M.B.; Dilcan, E.G.; Salihoğlu, G.; Mazur, D.M.; Lebedev, A.T.; Trebše, P. Photocatalytic Degradation of Chlothianidin: Effect of Humic Acids, Nitrates, and Oxygen. J. Anal. Chem. 2019, 74, 1371–1377. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Fan, L.; Su, L.; Zhao, Y. Photolysis Mechanism of Eleven Insecticides under Simulated Sunlight Irradiation: Kinetics, Pathway and QSAR. Chemosphere 2023, 334, 138968. [Google Scholar] [CrossRef]
- Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M.B.; Trebše, P. Photocatalytic Degradation with Immobilised TiO2 of Three Selected Neonicotinoid Insecticides: Imidacloprid, Thiamethoxam and Clothianidin. Chemosphere 2012, 89, 293–301. [Google Scholar] [CrossRef]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 4th ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2011; ISBN 9789211170429. [Google Scholar]
- Lykos, C.; Kourkouta, T.; Konstantinou, I. Study on the Photocatalytic Degradation of Metronidazole Antibiotic in Aqueous Media with TiO2 under Lab and Pilot Scale. Sci. Total Environ. 2023, 870, 161877. [Google Scholar] [CrossRef] [PubMed]
Photocatalyst | Adsorption (%) | kapp (min−1) | R2 | t1/2 (min) | Removal (%) |
---|---|---|---|---|---|
Blank | - | 0.0031 | 0.9976 | 224 | 51.3 |
WOFs | 0.1 | 0.0024 | 0.9756 | 289 | 41.7 |
CNU | 3.2 | 0.0056 | 0.9984 | 124 | 75.8 |
5%-WCNU | 3.0 | 0.0083 | 0.9900 | 84 | 88.6 |
6.5%-WCNU | 2.8 | 0.0104 | 0.9912 | 67 | 93.2 |
CNTU | 3.0 | 0.0051 | 0.9994 | 136 | 72.0 |
5%-WCNTU | 2.9 | 0.0058 | 0.9992 | 120 | 76.5 |
6.5%-WCNTU | 2.7 | 0.0063 | 0.9988 | 110 | 79.2 |
Conditions | Adsorption (%) | kapp (min−1) | R2 | t1/2 (min) | Removal (%) |
---|---|---|---|---|---|
Blank | 2.8 | 0.0104 | 0.9912 | 67 | 93.2 |
pH = 5 | 1.7 | 0.0090 | 0.9956 | 77 | 88.9 |
pH = 9 | 3.1 | 0.0118 | 0.9955 | 59 | 95.0 |
Cl− | 2.5 | 0.0098 | 0.9899 | 84 | 92.6 |
NO3− | 2.5 | 0.0114 | 0.9908 | 61 | 95.3 |
SO42− | 2.7 | 0.0094 | 0.9896 | 74 | 91.9 |
HA | 1.9 | 0.0062 | 0.9935 | 112 | 80.3 |
AcN (solvent) | 2.7 | 0.0078 | 0.9792 | 89 | 88.0 |
Compound | tR (min) | [M + H]+/[M + Na]+ | Molecular Formula | Δ (ppm) | RDB | MS2 [M + H]+ | Molecular Formula | Δ (ppm) | RDB |
---|---|---|---|---|---|---|---|---|---|
CLO | 7.30 | 250.0155 | C6H9O2N5ClS | −2.358 | 4.5 | 220.0170 | C6H9ON4ClS | −4.731 | 4.0 |
206.0144 | C6H9ON3ClS | −2.752 | 3.5 | ||||||
204.0226 | C6H9N4ClS | −2.432 | 4.0 | ||||||
169.0537 | C6H9N4S | −2.920 | 4.5 | ||||||
168.0460 | C6H8N4S | −2.550 | 5.0 | ||||||
131.9665 | C4H3NClS | −2.986 | 3.5 | ||||||
TP1 | 0.83 | 137.0817 | C6H9N4 | −3.522 | 4.5 | 81.0440 | C4H5N2 | −8.943 | 3.5 |
TP2 | 2.07 | 205.0307 | C6H10N4ClS | −1.226 | 3.5 | 188.0038 | C6H7N3ClS | −3.044 | 4.5 |
169.0537 | C6H9N4S | −3.215 | 4.5 | ||||||
163.0086 | C5H8N2ClS | −3.210 | 2.5 | ||||||
148.9930 | C4H6N2ClS | −3.176 | 2.5 | ||||||
131.9664 | C4H3NClS | −3.971 | 3.5 | ||||||
113.0162 | C4H5N2S | −5.269 | 3.5 | ||||||
TP3 | 0.66 | 221.0249 | C6H10ON4ClS | −4.189 | 3.5 | 185.0486 | C6H9ON4S | −3.016 | 4.5 |
168.0458 | C6H8N4S | −3.681 | 5.0 | ||||||
164.9879 | C4H6ON2ClS | −2.956 | 2.5 | ||||||
131.9663 | C4H3NClS | −4.729 | 3.5 | ||||||
129.0112 | C4H5ON2S | −3.954 | 3.5 | ||||||
113.0161 | C4H5N2S | −6.154 | 3.5 | ||||||
TP4 | 0.71 | 169.0539 | C6H9N4S | −2.210 | 4.5 | 113.0161 | C4H5N2S | −6.154 | 3.5 |
TP5 | 6.23 | 206.0146 | C6H9ON3ClS | −1.490 | 3.5 | 174.9723 | C5H4ON2ClS | −2.502 | 4.5 |
148.9929 | C4H6N2ClS | −3.847 | 2.5 | ||||||
131.9664 | C4H3NClS | −3.971 | 3.5 | ||||||
119.9663 | C3H3NClS | −5.202 | 2.5 | ||||||
113.0162 | C4H5N2S | −5.269 | 3.5 |
Compound | Acute Toxicity (LC50/EC50) | Chronic Toxicity (ChV) | ||||
---|---|---|---|---|---|---|
(Chemical Category) | Fish LC50 (mg L−1) | Daphnid LC50 (mg L−1) | Green Algae EC50 (mg L−1) | Fish ChV (mg L−1) | Daphnid ChV (mg L−1) | Green Algae ChV (mg L−1) |
CLO (AA) | 372.6 | 37.94 | 42.76 | 35.07 | 2.67 | 12.67 |
CLO (NN) | 354.2 | 105.7 | 63.50 | 177.0 | 5.91 | 3.48 |
TP1 (PY/DZ) | 189.1 | 64.45 | 3.00 | 0.42 | 1.11 | 1.23 |
TP2 (AA) | 300.9 | 30.67 | 34.48 | 28.22 | 2.16 | 10.23 |
TP2 (NI) | 7.86 | 0.25 | 92.78 | 3.68 | 0.03 | 9.89 |
TP3 (AA) | 1694 | 152.1 | 219.9 | 234.0 | 9.49 | 59.50 |
TP3 (NI) | 18.67 | 0.27 | 489.6 | 18.27 | 0.07 | 33.53 |
TP4 (AA) | 74.33 | 8.31 | 7.78 | 5.26 | 0.64 | 2.47 |
TP4 (NI) | 3.64 | 0.21 | 24.03 | 1.00 | 0.02 | 3.53 |
TP5 (SU) | 634.8 | 407.2 | 0.86 | 12.99 | 14.68 | 0.30 |
AA: aliphatic amines | Very toxic: LC50/EC50/ChV ≤ 1 mg L−1 | |||||
NN: neonicotinoids | Toxic: 1 mg L−1 < LC50/EC50/ChV ≤ 10 mg L−1 | |||||
SU: substituted ureas | Harmful: 10 mg L−1 < LC50/EC50/ChV ≤ 100 mg L−1 | |||||
NI: nicotinoids | Not harmful: 100 mg L−1 < LC50/EC50/ChV | |||||
PY/DZ: pyrroles/diazoles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lykos, C.; Bairamis, F.; Efthymiou, C.; Konstantinou, I. Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. Nanomaterials 2024, 14, 1045. https://doi.org/10.3390/nano14121045
Lykos C, Bairamis F, Efthymiou C, Konstantinou I. Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. Nanomaterials. 2024; 14(12):1045. https://doi.org/10.3390/nano14121045
Chicago/Turabian StyleLykos, Christos, Feidias Bairamis, Christina Efthymiou, and Ioannis Konstantinou. 2024. "Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media" Nanomaterials 14, no. 12: 1045. https://doi.org/10.3390/nano14121045
APA StyleLykos, C., Bairamis, F., Efthymiou, C., & Konstantinou, I. (2024). Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. Nanomaterials, 14(12), 1045. https://doi.org/10.3390/nano14121045