Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Postmortem Animal Studies
2.1.1. Mouse Models
2.1.2. Cell Line and Tumor Implantation
2.1.3. MNPs
2.1.4. Intratumor MNP Injections
2.1.5. MPI Scanner and Imaging
2.1.6. The microCT
2.1.7. AMF Heating
2.2. Image Analysis and Computational Modeling
2.2.1. Co-Registration
2.2.2. Imaging Data Calibration
2.2.3. Mesh Generation
2.2.4. FEA Software and Mathematical Models
2.3. Uncertainty Quantitation
3. Results
4. Discussion
4.1. MNP Distribution and Thermal Probe Placement
4.2. Implications for Treatment Planning
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 2011, 103, 317–324. [Google Scholar] [CrossRef]
- Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrott, J.C.; Taylor, C.B. Selective inductive heating of lymph nodes. Ann. Surg. 1957, 146, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Rmili, N.; Riahi, K.; M’Nassri, R.; Ouertani, B.; Cheikhrouhou-Koubaa, W.; Hlil, E.K. Magnetocaloric and induction heating characteristics of La0.71Sr0.29Mn0.95Fe0.05O3 nanoparticles. J. Sol-Gel Sci. Technol. 2024. ahead of print. [Google Scholar] [CrossRef]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P.J. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperth. 2003, 19, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Sapareto, S.A.; Dewey, W.C. Thermal dose determination in cancer-therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Oleson, J.R.; Samulski, T.V.; Leopold, K.A.; Clegg, S.T.; Dewhirst, M.W.; Dodge, R.K.; George, S.L. Sensitivity of hyperthermia trial outcomes to temperature and time—Implications for thermal goals of treatment. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, J.; van Rhoon, G.C. Hyperthermia is effective in improving clinical radiotherapy results. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 633–634. [Google Scholar] [CrossRef]
- Attaluri, A.; Kandala, S.K.; Wabler, M.; Zhou, H.; Cornejo, C.; Armour, M.; Hedayati, M.; Zhang, Y.; DeWeese, T.L.; Herman, C.; et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int. J. Hyperth. 2015, 31, 359–374. [Google Scholar] [CrossRef]
- Tohnai, I.; Goto, Y.; Hayashi, Y.; Ueda, M.; Kobayashi, T.; Matsui, M. Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (implant heating system: IHS). Int. J. Hyperth. 1996, 12, 37–47. [Google Scholar] [CrossRef]
- Otsuka, T.; Yonezawa, M.; Kamiyama, F.; Matsushita, Y.; Matsui, N. Results of surgery and radio-hyperthermo-chemotherapy for patients with soft-tissue sarcoma. Int. J. Clin. Oncol. 2001, 6, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Iwata, K.; Shakil, A.; Hur, W.J.; Makepeace, C.M.; Griffin, R.J.; Song, C.W. Tumour pO(2) can be increased markedly by mild hyperthermia. Br. J. Cancer 1996, 74, S217–S221. [Google Scholar]
- Brizel, D.M.; Scully, S.P.; Harrelson, J.M.; Layfield, L.J.; Dodge, R.K.; Charles, H.C.; Samulski, T.V.; Prosnitz, L.R.; Dewhirst, M.W. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res. 1996, 56, 5347–5350. [Google Scholar] [PubMed]
- Elming, P.B.; Sorensen, B.S.; Oei, A.L.; Franken, N.A.P.; Crezee, J.; Overgaard, J.; Horsman, M.R. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers 2019, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Zanker, K.S.; Lange, J. Whole-body hyperthermia and natural-killer cell-activity. Lancet 1982, 1, 1079–1080. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.Y.; Xiu, F.M.; An, H.Z.; Wang, X.J.; Wang, J.L.; Cao, X.T. Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sci. 2007, 80, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Dayanc, B.E.; Beachy, S.H.; Ostberg, J.R.; Repasky, E.A. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int. J. Hyperth. 2008, 24, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Roizintowle, L.; Pirro, J.P. The response of human and rodent cells to hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldöfner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles:: Presentation of a new interstitial technique. Int. J. Hyperth. 2005, 21, 637–647. [Google Scholar] [CrossRef]
- LeBrun, A.; Manuchehrabadi, N.; Attaluri, A.; Wang, F.; Ma, R.H.; Zhu, L. MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. Int. J. Hyperth. 2013, 29, 730–738. [Google Scholar] [CrossRef]
- Gneveckow, U.; Jordan, A.; Scholz, R.; Brüss, V.; Waldöfner, N.; Ricke, J.; Feussner, A.; Hildebrandt, B.; Rau, B.; Wust, P. Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia. Med. Phys. 2004, 31, 1444–1451. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, R. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Murase, K.; Aoki, M.; Banura, N.; Nishimoto, K.; Mimura, A.; Kuboyabu, T.; Yabata, I. Usefulness of Magnetic Particle Imaging for Predicting the Therapeutic Effect of Magnetic Hyperthermia. Open J. Med. Imaging 2015, 5, 85–99. [Google Scholar] [CrossRef]
- Kuboyabu, T.; Yabata, I.; Aoki, M.; Banura, N.; Nishimoto, K.; Mimura, A.; Murase, K. Magnetic Particle Imaging for Magnetic Hyperthermia Treatment: Visualization and Quantification of the Intratumoral Distribution and Temporal Change of Magnetic Nanoparticles in Vivo. Open J. Med. Imaging 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Tay, Z.W.; Chandrasekharan, P.; Chiu-Lam, A.; Hensley, D.W.; Dhavalikar, R.; Zhou, X.Y.; Conolly, S.M. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018, 12, 3699–3713. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; He, J.; Huang, X.; Hui, H.; An, Y.; Tian, J. A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging. IEEE Trans. Biomed. Eng. 2024. ahead of print. [Google Scholar] [CrossRef]
- Le, T.A.; Hadadian, Y.; Yoon, J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. Comput. Methods Programs Biomed. 2023, 235, 107546. [Google Scholar] [CrossRef]
- Carlton, H.; Weber, M.; Peters, M.; Arepally, N.; Lad, Y.S.; Jaswal, A.; Ivkov, R.; Attaluri, A.; Goodwill, P. HYPER: Pre-clinical device for spatially-confined magnetic particle hyperthermia. Int. J. Hyperth. 2023, 40, 2272067. [Google Scholar] [CrossRef]
- Buchholz, O.; Sajjamark, K.; Franke, J.; Wei, H.; Behrends, A.; Münkel, C.; Hofmann, U.G. In situ theranostic platform combining highly localized magnetic fluid hyperthermia, magnetic particle imaging, and thermometry in 3D. Theranostics 2024, 14, 324–340. [Google Scholar] [CrossRef]
- Behrends, A.; Wei, H.; Neumann, A.; Friedrich, T.; Bakenecker, A.C.; Franke, J.; Buzug, T.M. Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging. Nanotheranostics 2024, 8, 163–178. [Google Scholar] [CrossRef]
- Paulides, M.M.; Stauffer, P.R.; Neufeld, E.; Maccarini, P.F.; Kyriakou, A.; Canters, R.A.M.; Diederich, C.J.; Bakker, J.F.; Van Rhoon, G.C. Simulation techniques in hyperthermia treatment planning. Int. J. Hyperth. 2013, 29, 346–357. [Google Scholar] [CrossRef]
- Kok, H.P.; Crezee, J. Hyperthermia Treatment Planning: Clinical Application and Ongoing Developments. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 214–222. [Google Scholar] [CrossRef]
- Stalling, D.; Seebass, M.; Zöckler, M.; Hege, H.-C. Hyperthermia Treatment Planning with HyperPlan—User’s Manual; Publication Server of Zuse Institute Berlin (ZIB): Berlin, Germany, 2000. [Google Scholar]
- Gellermann, J.; Wust, P.; Stalling, D.; Seebass, M.; Nadobny, J.; Beck, R.; Hege, H.C.; Deuflhard, P.; Felix, R. Clinical evaluation and verification of the hyperthermia treatment planning system HyperPlan. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 1145–1156. [Google Scholar] [CrossRef]
- Sreenivasa, G.; Gellermann, J.; Rau, B.; Nadobny, J.; Schlag, P.; Deuflhard, P.; Felix, R.; Wust, P. Clinical use of the hyperthermia treatment planning system hyperplan to predict effectiveness and toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 407–419. [Google Scholar] [CrossRef]
- Schmid, G.; Überbacher, R.; Samaras, T.; Tschabitscher, M.; Mazal, P.R. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400–1850 MHz. Phys. Med. Biol. 2007, 52, 5457–5468. [Google Scholar] [CrossRef] [PubMed]
- De Bruijne, M.; Wielheesen, D.H.M.; Van der Zee, J.; Chavannes, N.; Van Rhoon, G.C. Benefits of superficial hyperthermia treatment planning: Five case studies. Int. J. Hyperth. 2007, 23, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Kok, H.P.; Kotte, A.; Crezee, J. Planning, optimisation and evaluation of hyperthermia treatments. Int. J. Hyperth. 2017, 33, 593–607. [Google Scholar] [CrossRef]
- Kok, H.P.; Crezee, J. Validation and practical use of Plan2Heat hyperthermia treatment planning for capacitive heating. Int. J. Hyperth. 2022, 39, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Diederich, C.J.; Wootton, J.H.; Pouliot, J.; Hsu, I.C. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int. J. Hyperth. 2010, 26, 39–55. [Google Scholar] [CrossRef]
- Kandala, S.K.; Sharma, A.; Mirpour, S.; Liapi, E.; Ivkov, R.; Attaluri, A. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Int. J. Hyperth. 2021, 38, 611–622. [Google Scholar] [CrossRef]
- Kandala, S.K.; Liapi, E.; Whitcomb, L.L.; Attaluri, A.; Ivkov, R. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: A computational optimization analysis for magnetic hyperthermia. Int. J. Hyperth. 2019, 36, 115–129. [Google Scholar] [CrossRef]
- Banura, N.; Mimura, A.; Nishimoto, K.; Murase, K. Heat transfer simulation for optimization and treatment planning of magnetic hyperthermia using magnetic particle imaging. arXiv 2016, arXiv:1605.08139. [Google Scholar]
- Tang, Y.D.; Chen, M.; Flesch, R.C.C.; Jin, T. Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia. Chin. Phys. B 2023, 32, 094401. [Google Scholar] [CrossRef]
- Bender, P.; Fock, J.; Frandsen, C.; Hansen, M.F.; Balceris, C.; Ludwig, F.; Johansson, C. Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers. J. Phys. Chem. C 2018, 122, 3068–3077. [Google Scholar] [CrossRef]
- Hedayati, M.; Abubaker-Sharif, B.; Khattab, M.; Razavi, A.; Mohammed, I.; Nejad, A.; Ivkov, R. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int. J. Hyperth. 2018, 34, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Carlton, H.; Ivkov, R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. J. Appl. Phys. 2023, 133, 044302. [Google Scholar] [CrossRef] [PubMed]
- Hergt, R.; Andra, W.; d’Ambly, C.G.; Hilger, I.; Kaiser, W.A.; Richter, U.; Schmidt, H.G. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 1998, 34, 3745–3754. [Google Scholar] [CrossRef]
- Andrä, W.; d’Ambly, C.G.; Hergt, R.; Hilger, I.; Kaiser, W.A. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Magn. Magn. Mater. 1999, 194, 197–203. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology 2014, 25, 28. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- Nagy, J.A.; DiDonato, C.J.; Rutkove, S.B.; Sanchez, B. Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Sci. Data 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Standards and Technology. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. Available online: http://physics.nist.gov/TN1297 (accessed on 15 October 2023).
- Karpavicius, A.; Coene, A.; Bender, P.; Leliaert, J. Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine. Nanoscale Adv. 2021, 3, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
Sample | Caliper Measured Tumor Volume (mm3) | MNP Injection Volume (µL) @ 50 mg Fe/mL |
---|---|---|
Tumor 1 | 144 | 5.6 |
Tumor 2 | 193 | 7.7 |
Tumor 3 | 280 | 11.2 |
Tumor 4 | 355 | 14.2 |
Tumor 5 | 455 | 18.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlton, H.; Arepally, N.; Healy, S.; Sharma, A.; Ptashnik, S.; Schickel, M.; Newgren, M.; Goodwill, P.; Attaluri, A.; Ivkov, R. Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia. Nanomaterials 2024, 14, 1059. https://doi.org/10.3390/nano14121059
Carlton H, Arepally N, Healy S, Sharma A, Ptashnik S, Schickel M, Newgren M, Goodwill P, Attaluri A, Ivkov R. Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia. Nanomaterials. 2024; 14(12):1059. https://doi.org/10.3390/nano14121059
Chicago/Turabian StyleCarlton, Hayden, Nageshwar Arepally, Sean Healy, Anirudh Sharma, Sarah Ptashnik, Maureen Schickel, Matt Newgren, Patrick Goodwill, Anilchandra Attaluri, and Robert Ivkov. 2024. "Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia" Nanomaterials 14, no. 12: 1059. https://doi.org/10.3390/nano14121059
APA StyleCarlton, H., Arepally, N., Healy, S., Sharma, A., Ptashnik, S., Schickel, M., Newgren, M., Goodwill, P., Attaluri, A., & Ivkov, R. (2024). Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia. Nanomaterials, 14(12), 1059. https://doi.org/10.3390/nano14121059