Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of nc-MoWC + α-C Nanocomposite Films
2.2. Film Characterisation
3. Results and Discussion
3.1. Phase Analysis of the nc-MoWC + α-C Nanocomposites
3.2. Morphology and Chemical Composition of Nanocomposite Films
3.3. Analysis of the Influence of Fabrication Parameters of Nanocomposite Films on Their Structure
3.4. Frequency–Temperature Measurements of the AC Properties of nc-MoWC + α-C Nanocomposites
3.4.1. Hopping Conductivity by Electron Tunnelling
3.4.2. AC Conductivity Measurements
- Conductivity of a single-phase film
- 2.
- Conductivity of a film with a two-phase composition
3.5. Frequency–Temperature Dependence of Permittivity
3.6. Analysis of the Tribomechanical Parameters of Mo-W-C Nanolayers
3.6.1. Microhardness of Nanocomposites
3.6.2. Tribological Properties
3.6.3. Phonon Spectrum Calculations and Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diedkova, K.; Pogrebnjak, A.D.; Kyrylenko, S.; Smyrnova, K.; Buranich, V.V.; Horodek, P.; Zukowski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Makashina, K.; et al. Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15, 14033–14047. [Google Scholar] [CrossRef] [PubMed]
- Pogorielov, M.; Smyrnova, K.; Kyrylenko, S.; Gogotsi, O.; Zahorodna, V.; Pogrebnjak, A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials 2021, 11, 3412. [Google Scholar] [CrossRef] [PubMed]
- Kyrylenko, S.; Gogotsi, O.; Baginskiy, I.; Balitskyi, V.; Zahorodna, V.; Husak, Y.; Yanko, I.; Pernakov, M.; Roshchupkin, A.; Lyndin, M.; et al. MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Appl. Mater. Interfaces 2022, 14, 28683–28696. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, A.K.; Uglov, V.V.; Rusalsky, D.P. Hard and Wear-Resistant Niobium, Molybdenum Carbide Layered Coatings on WC-Co Tools Produced by Ion Bombardment and Cathodic Vacuum Arc Deposition. Surf. Coat. Technol. 2020, 395, 125920. [Google Scholar] [CrossRef]
- Chayeuski, V.V.; Kuleshov, A.K.; Barcík, Š.; Koleda, P.; Rudak, O.G.; Rudak, P.V. Influence of MoC Coatings on Wear of Edges of Steel Knives and Cutting Parameters for Milling Oak Wood. J. Frict. Wear 2022, 43, 370–376. [Google Scholar] [CrossRef]
- Wang, X.R.; Yan, M.F.; Chen, H.T. First-Principle Calculations of the Hardness and Melting Point of Mo2C. J. Mater. Sci. Technol. 2009, 25, 419–422. [Google Scholar]
- Fan, Y.; Xu, C.; Liu, X.; Ma, C.; Yin, Y.; Cheng, H.-M.; Ren, W.; Li, X. Distinct Superconducting Properties and Hydrostatic Pressure Effects in 2D α- and β-Mo2C Crystal Sheets. NPG Asia Mater. 2020, 12, 60. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Liu, Z.; Liu, Z.; Yang, Z.; Cheng, H.; Ren, W.; Kang, N. Correlation between Nanoscale Domain Structures and Superconducting Phase Transitions in Highly Crystalline 2D Superconductors. Adv. Elect. Mater. 2023, 9, 2201170. [Google Scholar] [CrossRef]
- Poole, C.P. (Ed.) Handbook of Superconductivity; Academic Press: San Diego, CA, USA, 2000; ISBN 978-0-12-561460-3. [Google Scholar]
- Huang, A.; Smith, A.D.; Schwinn, M.; Lu, Q.; Chang, T.-R.; Xie, W.; Jeng, H.-T.; Bian, G. Multiple Topological Electronic Phases in Superconductor MoC. Phys. Rev. Mater. 2018, 2, 054205. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernández-Martínez, I.; Sánchez-López, J.C.; Rojas, T.C.; Wennberg, A.; Bellido-González, V.; Molina-Aldareguia, J.M.; Monclús, M.A.; González-Arrabal, R. Tribomechanical Properties of Hard Cr-Doped DLC Coatings Deposited by Low-Frequency HiPIMS. Surf. Coat. Technol. 2020, 382, 124899. [Google Scholar] [CrossRef]
- Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W. Mo Doped DLC Nanocomposite Coatings with Improved Mechanical and Blood Compatibility Properties. Appl. Surf. Sci. 2014, 311, 758–762. [Google Scholar] [CrossRef]
- Yau, B.-S.; Chu, C.-W.; Lin, D.; Lee, W.; Duh, J.-G.; Lin, C.-H. Tungsten Doped Chromium Nitride Coatings. Thin Solid Films 2008, 516, 1877–1882. [Google Scholar] [CrossRef]
- Chen, X.; Liao, D.; Jiang, X.; Zhang, D.; Shi, T. Effect of Tungsten Doping on the Performance of MAO Coatings on a Ti6Al4V Drill Pipe. Surf. Innov. 2020, 8, 279–286. [Google Scholar] [CrossRef]
- Yue, W.; Liu, C.; Fu, Z.; Wang, C.; Huang, H.; Liu, J. Effects of Tungsten Doping Contents on Tribological Behaviors of Tungsten-Doped Diamond-Like Carbon Coatings Lubricated by MoDTC. Tribol. Lett. 2015, 58, 31. [Google Scholar] [CrossRef]
- Mandal, P.; Ehiasarian, A.P.; Hovsepian, P.E. Tribological Behaviour of Mo–W Doped Carbon-Based Coating at Ambient Condition. Tribol. Int. 2015, 90, 135–147. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Mandal, P.; Ehiasarian, A.P.; Sáfrán, G.; Tietema, R.; Doerwald, D. Friction and Wear Behaviour of Mo–W Doped Carbon-Based Coating during Boundary Lubricated Sliding. Appl. Surf. Sci. 2016, 366, 260–274. [Google Scholar] [CrossRef]
- Mandal, P.; Ehiasarian, A.P.; Hovsepian, P.E. Isothermal and Dynamic Oxidation Behaviour of Mo–W Doped Carbon-Based Coating. Appl. Surf. Sci. 2015, 353, 1291–1309. [Google Scholar] [CrossRef]
- Page, K.; Li, J.; Savinelli, R.; Szumila, H.N.; Zhang, J.; Stalick, J.K.; Proffen, T.; Scott, S.L.; Seshadri, R. Reciprocal-Space and Real-Space Neutron Investigation of Nanostructured Mo2C and WC. Solid State Sci. 2008, 10, 1499–1510. [Google Scholar] [CrossRef]
- Mandal, P. Influence of Carbon: Metal Ratio on Tribological Behavior of Mo-W-C Coating. Appl. Sci. 2021, 11, 10189. [Google Scholar] [CrossRef]
- Onoprienko, A.A.; Ivashchenko, V.I.; Scrynskyy, P.L.; Sinelnichenko, A.K.; Kozak, A.A.; Kovalchenko, A.M.; Olifan, E.I. Influence of Nitrogen on the Microstructure, Hardness, and Tribological Properties of Cr–Ni–B–C–N Films Deposited by DC Magnetron Sputtering. J. Superhard Mater. 2020, 42, 68–77. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Maksakova, O.; Buranich, V.; Konarski, P.; Bondariev, V.; Zukowski, P.; Skrynskyy, P.; Sinelnichenko, A.; Shelest, I.; et al. Comparative Measurements and Analysis of the Mechanical and Electrical Properties of Ti-Zr-C Nanocomposite: Role of Stoichiometry. Measurement 2021, 176, 109223. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02, 154–160. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Koltunowicz, T.N. Test Station for Frequency-Domain Dielectric Spectroscopy of Nanocomposites and Semiconductors. J. Appl. Spectrosc. 2015, 82, 653–658. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Shevchenko, V.I.; Ivashchenko, L.A.; Gorb, L.; Leszczynski, J. Stability and Mechanical Properties of Molybdenum Carbides and the Ti–Mo–C Solid Solutions: A First-Principles Study. Mater. Chem. Phys. 2022, 275, 125178. [Google Scholar] [CrossRef]
- Shi, X.-R.; Wang, S.-G.; Wang, H.; Deng, C.-M.; Qin, Z.; Wang, J. Structure and Stability of β-Mo2C Bulk and Surfaces: A Density Functional Theory Study. Surf. Sci. 2009, 603, 852–859. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Wang, Z.; Chen, W.; Li, J.T.; Luong, D.X.; Carter, R.A.; Gao, G.; Yakobson, B.I.; Zhao, Y.; Tour, J.M. Phase Controlled Synthesis of Transition Metal Carbide Nanocrystals by Ultrafast Flash Joule Heating. Nat. Commun. 2022, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Pireaux, J.J. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J. Electron. Spectrosc. Relat. Phenom. 1993, 62, 371–372. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Referencing to Adventitious Carbon in X-ray Photoelectron Spectroscopy: Can Differential Charging Explain C 1s Peak Shifts? Appl. Surf. Sci. 2022, 606, 154855. [Google Scholar] [CrossRef]
- Greczynski, G.; Haasch, R.T.; Hellgren, N.; Lewin, E.; Hultman, L. X-ray Photoelectron Spectroscopy of Thin Films. Nat. Rev. Methods Primers 2023, 3, 40. [Google Scholar] [CrossRef]
- Newman, J.A.; Schmitt, P.D.; Toth, S.J.; Deng, F.; Zhang, S.; Simpson, G.J. Parts per Million Powder X-ray Diffraction. Anal. Chem. 2015, 87, 10950–10955. [Google Scholar] [CrossRef]
- Döbelin, N. Validation of XRD Phase Quantification using Semi-synthetic Data. Powder Diffr. 2020, 35, 262–275. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications; Materials Science and Process Technology Series Electronic Materials and Process Technology; Noyes Publications: Westwood, NJ, USA, 1996; ISBN 978-0-8155-1392-6. [Google Scholar]
- Sathish, C.I.; Guo, Y.; Wang, X.; Tsujimoto, Y.; Li, J.; Zhang, S.; Matsushita, Y.; Shi, Y.; Tian, H.; Yang, H.; et al. Superconducting and Structural Properties of δ-MoC0.681 Cubic Molybdenum Carbide Phase. J. Solid State Chem. 2012, 196, 579–585. [Google Scholar] [CrossRef]
- Gao, J.; Wu, Y.; Jia, C.; Zhong, Z.; Gao, F.; Yang, Y.; Liu, B. Controllable Synthesis of α-MoC1-x and β-Mo2C Nanowires for Highly Selective CO2 Reduction to CO. Catal. Commun. 2016, 84, 147–150. [Google Scholar] [CrossRef]
- Kavitha, M.; Sudha Priyanga, G.; Rajeswarapalanichamy, R.; Iyakutti, K. Structural Stability, Electronic, Mechanical and Superconducting Properties of CrC and MoC. Mater. Chem. Phys. 2016, 169, 71–81. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Feng, J.; Zhou, R. Elasticity, Electronic Properties and Hardness of MoC Investigated by First Principles Calculations. Phys. B Condens. Matter. 2013, 419, 45–50. [Google Scholar] [CrossRef]
- Hugosson, H.W.; Eriksson, O.; Nordström, L.; Jansson, U.; Fast, L.; Delin, A.; Wills, J.M.; Johansson, B. Theory of Phase Stabilities and Bonding Mechanisms in Stoichiometric and Substoichiometric Molybdenum Carbide. J. Appl. Phys. 1999, 86, 3758–3767. [Google Scholar] [CrossRef]
- Hart, G.L.W.; Klein, B.M. Phonon and Elastic Instabilities in MoC and MoN. Phys. Rev. B 2000, 61, 3151–3154. [Google Scholar] [CrossRef]
- Athanasiou, N.S. Structural Instability and Superconductivity of the Defect Cubic Structure δ-MoC1-x. Mod. Phys. Lett. B 1997, 11, 939–947. [Google Scholar] [CrossRef]
- Wich, H. N. F. Mott. Metal-insulator Transitions. Taylor & Francis Ltd., London 1974 XVI, 278 Seiten, 158 Figuren. Preis Geb. $ 6.50. Cryst. Res. Technol. 1975, 10, K57–K58. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Żukowski, P.; Kołtunowicz, T.; Partyka, J.; Węgierek, P.; Komarov, F.F.; Mironov, A.M.; Butkievith, N.; Freik, D. Dielectric Properties and Model of Hopping Conductivity of GaAs Irradiated by H+ Ions. Vacuum 2007, 81, 1137–1140. [Google Scholar] [CrossRef]
- Zhukowski, P.; Kołtunowicz, T.; Fedotova, J.; Larkin, A. An Effect of Annealing on Electric Properties of Nanocomposites (CoFeZr)x(Al2O3)1-x Produced by Magnetron Sputtering in the Atmosphere of Argon and Oxygen beyond the Percolation Threshold. Prz. Elektrotech. 2010, 87, 157–159. [Google Scholar]
- Żukowski, P.; Kierczyński, K.; Kołtunowicz, T.N.; Rogalski, P.; Subocz, J. Application of Elements of Quantum Mechanics in Analysing AC Conductivity and Determining the Dimensions of Water Nanodrops in the Composite of Cellulose and Mineral Oil. Cellulose 2019, 26, 2969–2985. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifšic, E.M.; Landau, L.D. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Course of Theoretical Physics; Landau, D.L., Lifshitz, E.M., Eds.; Elsevier: Singapore, 2007; ISBN 978-0-7506-3539-4. [Google Scholar]
- Zukowski, P.; Rogalski, P.; Kierczynski, K.; Koltunowicz, T.N. Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation. Energies 2021, 14, 5802. [Google Scholar] [CrossRef]
- Nowak, R.J. Statystyka dla Fizyków; Wydaw. Naukowe PWN: Warszawa, Poland, 2002; ISBN 978-83-01-13702-1. [Google Scholar]
- Żukowski, P.; Gałaszkiewicz, P.; Bondariev, V.; Okal, P.; Pogrebnjak, A.; Kupchishin, A.; Ruban, A.; Pogorielov, M.; Kołtunowicz, T.N. Comparative Measurements and Analysis of the Electrical Properties of Nanocomposites TixZr1−xC+α-Cy (0.0 ≤ x ≤ 1.0). Materials 2022, 15, 7908. [Google Scholar] [CrossRef]
- Zukowski, P.; Kierczynski, K.; Koltunowicz, T.N.; Rogalski, P.; Subocz, J.; Korenciak, D. AC Conductivity Measurements of Liquid-Solid Insulation of Power Transformers with High Water Content. Measurement 2020, 165, 108194. [Google Scholar] [CrossRef]
- Koltunowicz, T.N. Dielectric Properties of (CoFeZr)_x(PZT)100-x Nanocomposites Produced with a Beam of Argon and Oxygen Ions. Acta Phys. Pol. A 2014, 125, 1412–1415. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media, 2nd ed.; Pergamon International Library of Science, Technology, Engineering, and Social Studies; Pergamon: Oxford, UK; New York, NY, USA, 1984; ISBN 978-0-08-030276-8. [Google Scholar]
- Pauling, L. Electronic Processes in Ionic Crystals. By N. F. Mott and R. W. Gurney. J. Phys. Chem. 1941, 45, 1142. [Google Scholar] [CrossRef]
- Psarras, G.C.; Manolakaki, E.; Tsangaris, G.M. Dielectric Dispersion and Ac Conductivity in—Iron Particles Loaded—Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 1187–1198. [Google Scholar] [CrossRef]
- Kudryashov, M.A.; Mashin, A.I.; Logunov, A.A.; Chidichimo, G.; De Filpo, G. Frequency Dependence of the Electrical Conductivity in Ag/PAN Nanocomposites. Technol. Phys. 2012, 57, 965–970. [Google Scholar] [CrossRef]
- Esaki, L. New Phenomenon in Narrow Germanium p − n Junctions. Phys. Rev. 1958, 109, 603–604. [Google Scholar] [CrossRef]
- Żukowski, P.; Partyka, J.; Węgierek, P. Effect of Ion Implantation and Annealing on the Dielectric Properties of Silicon. Phys. Stat. Sol. (a) 1997, 159, 509–515. [Google Scholar] [CrossRef]
- Shklovskii, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1984; Volume 45, ISBN 978-3-662-02405-8. [Google Scholar]
- Sun, C.; Zheng, Y.; Fang, F.; Tu, Y.; Jiang, J.; Zhou, X. Optimization of Thermal Stability and Mechanical Properties of Mo2C Carbides via Multi-Element Doping: Experimental and Theoretical Calculations. J. Mater. Sci. 2022, 57, 16352–16366. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Zhou, R.; Liu, X.; Feng, J. Elastic and Thermodynamic Properties of Mo2C Polymorphs from First Principles Calculations. Ceram. Int. 2015, 41, 5239–5246. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Onoprienko, A.; Pogrebnjak, A.; Scrynskyy, P.; Marchuk, O.; Kovalchenko, A.; Olifan, O. Influence of Bias Voltage on the Structure and Mechanical Properties of Ti-Nb-C Films Deposited by DC Dual Magnetron Sputtering. High Temp. Mat. Proc. 2024, 28, 25–32. [Google Scholar] [CrossRef]
- Kumar, D.D.; Kumar, N.; Panda, K.; Kamalan Kirubaharan, A.M.; Kuppusami, P. Tribochemistry of Contact Interfaces of Nanocrystalline Molybdenum Carbide Films. Appl. Surf. Sci. 2018, 447, 677–686. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, T.; Chen, H. Microstructure, Mechanical and Tribological Properties of TiN/Mo2N Nano-Multilayer Films Deposited by Magnetron Sputtering. Surf. Coat. Technol. 2015, 261, 156–160. [Google Scholar] [CrossRef]
- Polcar, T.; Parreira, N.M.G.; Cavaleiro, A. Tungsten Oxide with Different Oxygen Contents: Sliding Properties. Vacuum 2007, 81, 1426–1429. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Čaplovič, Ľ.; Shevchenko, V.I.; Gorb, L.; Leszczynski, J. Stability and Mechanical, Thermodynamic and Optical Properties of WC Polytypes and the TiC-WC Solid Solutions: A First-principles Study. J. Phys. Chem. Solids 2023, 183, 111652. [Google Scholar] [CrossRef]
- Kim, W.J.; Mesbah, A.; Deschanels, X.; Bernard, S.; Lebègue, S. First Principles Investigations of the Optical Selectivity of Titanium Carbide-Based Materials for Concentrating Solar Power Applications. J. Mater. Chem. C 2021, 9, 7591–7598. [Google Scholar] [CrossRef]
- Temple, P.A.; Hathaway, C.E. Multiphonon Raman Spectrum of Silicon. Phys. Rev. B 1973, 7, 3685–3697. [Google Scholar] [CrossRef]
- Jadkar, V.; Pawbake, A.; Waykar, R.; Jadhavar, A.; Mayabadi, A.; Date, A.; Late, D.; Pathan, H.; Gosavi, S.; Jadkar, S. Synthesis of Orthorhombic-Molybdenum Trioxide (α-MoO3) Thin Films by Hot Wire-CVD and Investigations of Its Humidity Sensing Properties. J. Mater. Sci. Mater. Electron. 2017, 28, 15790–15796. [Google Scholar] [CrossRef]
- Zhang, H.; Han, L.; Duan, A.; Xu, C.; Zhao, Z.; Wei, Y.; Jiang, G.; Liu, J.; Wang, D.; Xia, Z. Synthesis of Micro-Mesoporous Materials ZSM-5/FDU-12 and the Performance of Dibenzothiophene Hydrodesulfurization. RSC Adv. 2017, 7, 28038–28047. [Google Scholar] [CrossRef]
- Elmasides, C.; Kondarides, D.I.; Neophytides, S.G.; Verykios, X.E. Partial Oxidation of Methane to Synthesis Gas over Ru/TiO2 Catalysts: Effects of Modification of the Support on Oxidation State and Catalytic Performance. J. Catal. 2001, 198, 195–207. [Google Scholar] [CrossRef]
Sample | TS (°C) | U (V) | FAr (sccm) | p (Pa) | Target Mo-W | Target C | Deposition Time (min) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
U (V) | I (mA) | PMo-W (W) | U (V) | I (mA) | PC (W) | ||||||
S1 | 400 | −50 | 58 | 0.2 | 310 | 200 | 62 | 300 | 50 | 15 | 60 |
S2 | 400 | −50 | 58 | 0.2 | 340 | 200 | 68 | 400 | 100 | 40 | 60 |
S3 | 400 | −50 | 58 | 0.2 | 340 | 200 | 68 | 420 | 150 | 63 | 60 |
S4 | 400 | −50 | 58 | 0.2 | 330 | 200 | 66 | 420 | 200 | 84 | 60 |
S5 | 400 | −50 | 58 | 0.2 | 330 | 200 | 66 | 440 | 250 | 110 | 60 |
Sample | Lattice Parameters (Å) | Phase Percentage (%) | |||
---|---|---|---|---|---|
β-Mo2C | α-MoCk | ||||
a | c | a | β-Mo2C | α-MoCk | |
S1 | 2.958 | 4.649 | − | 100 | − |
S2 | 2.972 | 4.666 | − | 100 | − |
S3 | 2.933 | 4.622 | 4.217 | 47 | 53 |
S4 | 2.928 | 4.619 | 4.219 | 28 | 72 |
S5 | 2.941 | 4.634 | 4.227 | 29 | 71 |
Sample | Elemental Composition (at.%) | ||
---|---|---|---|
Mo | W | C | |
S1 | 37.9 | 6.9 | 55.2 |
S2 | 31.4 | 5.9 | 62.7 |
S3 | 33.6 | 6.3 | 60.1 |
S4 | 26.5 | 4.8 | 68.7 |
S5 | 27.5 | 4.9 | 67.6 |
Sample | Elemental Composition MoW | Structure of Molybdenum Carbide | C in Nanocomposite | ||||
---|---|---|---|---|---|---|---|
Mo, a.u. (x) | W, a.u. (1 − x) | (Mo2 + W2)C, a.u. (y) | (Mo + W)Ck(0.65≤k≤1) a.u. (1 − y) | C in Carbides a.u. | Redundant C, a.u. (z) | Total C a.u. | |
S1 | 0.846 | 0.154 | 1 | 0 | 0.5 | 0.73 | 1.23 |
S2 | 0.842 | 0.158 | 1 | 0 | 0.5 | 1.18 | 1.68 |
S3 | 0.842 | 0.158 | 0.47 | 0.53 | 0.67 ± 0.09 | 0.81 ≤ z ≤ 0.99 | 1.57 |
S4 | 0.845 | 0.155 | 0.28 | 0.72 | 0.735 ± 0.125 | 1.50 ≤ z ≤ 1.75 | 2.36 |
S5 | 0.847 | 0.153 | 0.29 | 0.71 | 0.725 ± 0.125 | 1.32 ≤ z ≤ 1.57 | 2.17 |
Average | 0.8444 ± 0.0022 | 0.1556 ± 0.0022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyrnova, K.; Ivashchenko, V.I.; Sahul, M.; Čaplovič, Ľ.; Skrynskyi, P.; Kozak, A.; Konarski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Bondariev, V.; et al. Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films. Nanomaterials 2024, 14, 1061. https://doi.org/10.3390/nano14121061
Smyrnova K, Ivashchenko VI, Sahul M, Čaplovič Ľ, Skrynskyi P, Kozak A, Konarski P, Koltunowicz TN, Galaszkiewicz P, Bondariev V, et al. Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films. Nanomaterials. 2024; 14(12):1061. https://doi.org/10.3390/nano14121061
Chicago/Turabian StyleSmyrnova, Kateryna, Volodymyr I. Ivashchenko, Martin Sahul, Ľubomír Čaplovič, Petro Skrynskyi, Andrii Kozak, Piotr Konarski, Tomasz N. Koltunowicz, Piotr Galaszkiewicz, Vitalii Bondariev, and et al. 2024. "Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films" Nanomaterials 14, no. 12: 1061. https://doi.org/10.3390/nano14121061
APA StyleSmyrnova, K., Ivashchenko, V. I., Sahul, M., Čaplovič, Ľ., Skrynskyi, P., Kozak, A., Konarski, P., Koltunowicz, T. N., Galaszkiewicz, P., Bondariev, V., Zukowski, P., Budzynski, P., Borba-Pogrebnjak, S., Kamiński, M., Bónová, L., Beresnev, V., & Pogrebnjak, A. (2024). Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films. Nanomaterials, 14(12), 1061. https://doi.org/10.3390/nano14121061