MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatuses
2.2. Synthesis of MXene
2.3. Preparation of MXene@PDA
2.4. Synthesis of Co-N-CDs
2.5. Synthetic MXene@PDA/Co-N-CDs
2.6. Exploration of the POD-Like Activity of MXene@PDA/Co-N-CDs
2.7. ·OH Monitored by Using MB
2.8. Steady-State Kinetic Analysis of MXene@PDA/Co-N-CDs
2.9. H2O2 Detection
2.10. Detection of GSH
2.11. Detection of Glutathione in Human Urine and Serum Samples
2.12. Photothermic Performance of MXene@PDA/Co-N-CDs In Vitro
2.13. Cytotoxicity Test by the CCK-8 Assay
2.14. Apoptosis Detection
2.15. Clonogenic Assay
2.16. Intracellular ROS Detection
3. Results and Discussion
3.1. Characterization
3.2. Peroxidase-like Activity of MXene@PDA/Co-N-CDs
3.3. Colorimetric Detection of H2O2 and GSH
3.4. In Vitro Photothermal Properties of MXene@PDA/Co-N-CDs
3.5. Anticancer Cell Effects In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, X.; Meng, H.; Sun, Y.; Qu, L.; Lin, Y.; Li, Z.; Du, D. Far-Red to Near-Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small 2019, 15, 1901507. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.M.; Khan, W.U.; Ahmed, F.; Wei, Y.; Xiong, H. Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chem. Eng. J. 2023, 465, 143010. [Google Scholar] [CrossRef]
- Su, W.; Wu, H.; Xu, H.; Zhang, Y.; Li, Y.; Li, X.; Fan, L. Carbon dots: A booming material for biomedical applications. Mater. Chem. Front. 2020, 4, 821–836. [Google Scholar] [CrossRef]
- Huang, S.; Yang, E.; Yao, J.; Chu, X.; Liu, Y.; Zhang, Y.; Xiao, Q. Nitrogen, Cobalt Co-doped Fluorescent Magnetic Carbon Dots as Ratiometric Fluorescent Probes for Cholesterol and Uric Acid in Human Blood Serum. ACS Omega 2019, 4, 9333–9342. [Google Scholar] [CrossRef]
- Alaghmandfard, A.; Sedighi, O.; Tabatabaei Rezaei, N.; Abedini, A.A.; Malek Khachatourian, A.; Toprak, M.S.; Seifalian, A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C 2021, 120, 111756. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Jiang, Y.; Sun, X.; Bai, Z.; Zhang, Y.; Zhou, X. Surface modification and chemical functionalization of carbon dots: A review. Microchim. Acta 2018, 185, 424. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Kuang, T.; Liu, Y.; Cai, L.; Peng, X.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Song, Y.; Zhang, J.R.; Chen, X.; Zhu, J.J. Antibacterial Carbon Dots-Based Composites. Small 2023, 19, 2207385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-Q.; Li, Y.-s.; Liu, W.-P.; Gao, X.-F. A fluorimetric and colorimetric dual-signal sensor for hydrogen peroxide and glucose based on the intrinsic peroxidase-like activity of cobalt and nitrogen co-doped carbon dots and inner filter effect. Anal. Methods 2021, 13, 3196–3204. [Google Scholar] [CrossRef]
- Geng, B.; Xu, S.; Shen, L.; Fang, F.; Shi, W.; Pan, D. Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. Carbon 2021, 179, 493–504. [Google Scholar] [CrossRef]
- Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; et al. Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Adv. Electron. Mater. 2021, 7, 2000967. [Google Scholar] [CrossRef]
- Zhu, X.; Pang, X.; Zhang, Y.; Yao, S. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. J. Mater. Chem. B 2019, 7, 7729–7735. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Varma, R.S. MXene-Based Composites as Nanozymes in Biomedicine: A Perspective. Nano-Micro Lett. 2022, 14, 213. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Zhao, R.; Zhou, Y.; Feng, L.; Gai, S.; Yang, P. Pt Decorated Ti3C2Tx MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics. ACS Nano 2022, 16, 3105–3118. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Dong, Z.; Zhang, R.; Yi, X.; Yang, K.; Jin, M.; Yuan, C.; Xiao, Z.; Liu, Z.; Cheng, L. Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano 2018, 13, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Zhang, Y.; Wang, H.; Khan, K.; Tareen, A.K.; Qian, W.; Zhang, H.; Ågren, H. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Hu, T.; Wang, Y.; He, K.; Wang, Z.; Hora, Y.; Zhao, W.; Xu, R.; Chen, Y.; Xie, Z.; et al. Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving. Nat. Commun. 2023, 14, 4075. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhang, J.; Jiang, C.; Lin, J.; Huang, P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020, 400, 126009. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Liu, R.; Wu, R.; Zhang, J. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 2022, 442, 136072. [Google Scholar] [CrossRef]
- Lv, H.; Zhen, C.; Liu, J.; Yang, P.; Hu, L.; Shang, P. Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. Oxidative Med. Cell. Longev. 2019, 2019, 3150145. [Google Scholar] [CrossRef]
- Huang, R.; Wang, B.-B.; Si-Tu, X.-M.; Gao, T.; Wang, F.-F.; He, H.; Fan, X.-Y.; Jiang, F.-L.; Liu, Y. A lysosome-targeted fluorescent sensor for the detection of glutathione in cells with an extremely fast response. Chem. Commun. 2016, 52, 11579–11582. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Q.; Ma, Y.; Jiang, X.; Niu, N.; Chen, L. Synthesis of KCl-doped lignin carbon dots nanoenzymes for colorimetric sensing glutathione in human serum. Sens. Actuators B Chem. 2022, 364, 131881. [Google Scholar] [CrossRef]
- Hodáková, J.; Preisler, J.; Foret, F.; Kubáň, P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515 nm) laser-induced fluorescence detection. J. Chromatogr. A 2015, 1391, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Li, P.; Xu, Z.; Liu, X.; Zhang, Y.; Liu, M.; Yao, S. Signal On–Off Electrochemical Sensor for Glutathione Based on a AuCu-Decorated Zr-Containing Metal–Organic Framework via Solid-State Electrochemistry of Cuprous Chloride. ACS Sens. 2022, 7, 2465–2474. [Google Scholar] [CrossRef]
- Qin, L.; Li, X.; Kang, S.-Z.; Mu, J. Gold nanoparticles conjugated dopamine as sensing platform for SERS detection. Colloids Surf. B Biointerfaces 2015, 126, 210–216. [Google Scholar] [CrossRef]
- Tsiasioti, A.; Tzanavaras, P.D. Determination of glutathione and glutathione disulfide using liquid chromatography: A review on recent applications. Microchem. J. 2023, 193, 109157. [Google Scholar] [CrossRef]
- Nesakumar, N.; Berchmans, S.; Alwarappan, S. Chemically modified carbon based electrodes for the detection of reduced glutathione. Sens. Actuators B Chem. 2018, 264, 448–466. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Feng, W.; Wang, W.; Yu, D. Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128055. [Google Scholar] [CrossRef]
- Chen, S.; Xu, J.; Shi, M.; Yu, Y.; Xu, Q.; Duan, X.; Gao, Y.; Lu, L. Polydopamine bridged MXene and NH2-MWCNTs nanohybrid for high-performance electrochemical sensing of Acetaminophen. Appl. Surf. Sci. 2021, 570, 151149. [Google Scholar] [CrossRef]
- Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Int. Ed. 2016, 55, 14569–14574. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cui, J.; Zhang, L.; Xu, X.; Chen, X.; Sun, D. A Moisture-Driven Actuator Based on Polydopamine-Modified MXene/Bacterial Cellulose Nanofiber Composite Film. Adv. Funct. Mater. 2021, 31, 2101378. [Google Scholar] [CrossRef]
- Wang, S.; Jin, D.; Bian, Y.; Wang, R.; Zhang, L. Electrostatically Fabricated Three-Dimensional Magnetite and MXene Hierarchical Architecture for Advanced Lithium-Ion Capacitors. ACS Appl. Mater. Interfaces 2020, 12, 9226–9235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, Y.; Qu, J.; Qu, J.; Li, S. Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sens. Actuators B Chem. 2016, 223, 501–508. [Google Scholar] [CrossRef]
- Yuxin, X.; Laipeng, S.; Kang, L.; Haipeng, S.; Zonghua, W.; Wenjing, W. Metal-doped carbon dots as peroxidase mimic for hydrogen peroxide and glucose detection. Anal. Bioanal. Chem. 2022, 414, 5857–5867. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lee, J.; Kim, H.S.; Cho, A.; Shim, K.H.; Le, T.N.; An, S.S.A.; Han, J.W.; Kim, M.I.; Lee, J. Heme Cofactor-Resembling Fe–N Single Site Embedded Graphene as Nanozymes to Selectively Detect H2O2 with High Sensitivity. Adv. Funct. Mater. 2019, 30, 1905410. [Google Scholar] [CrossRef]
- Li, H.; Wen, Y.; Zhu, X.; Wang, J.; Zhang, L.; Sun, B. Novel Heterostructure of a MXene@NiFe-LDH Nanohybrid with Superior Peroxidase-Like Activity for Sensitive Colorimetric Detection of Glutathione. ACS Sustain. Chem. Eng. 2019, 8, 520–526. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, T.; Liu, W.; Hou, L.; Ye, F.; Zhao, S. Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhu, B.; Wang, Y.; Wu, H.; Chai, F.; Qu, F.; Su, Z. Nitrogen- and sulfur-doped carbon dots as peroxidase mimetics: Colorimetric determination of hydrogen peroxide and glutathione, and fluorimetric determination of lead(II). Microchim. Acta 2019, 186, 604. [Google Scholar] [CrossRef]
- Singh, V.K.; Yadav, P.K.; Chandra, S.; Bano, D.; Talat, M.; Hasan, S.H. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H2O2 and glutathione in human blood serum. J. Mater. Chem. B 2018, 6, 5256–5268. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, M.; Wang, X.; Ma, W.; Li, J. Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sens. Actuators B Chem. 2021, 329, 129115. [Google Scholar] [CrossRef]
- Guo, D.; Li, C.; Liu, G.; Luo, X.; Wu, F. Oxidase Mimetic Activity of a Metalloporphyrin-Containing Porous Organic Polymer and Its Applications for Colorimetric Detection of Both Ascorbic Acid and Glutathione. ACS Sustain. Chem. Eng. 2021, 9, 5412–5421. [Google Scholar] [CrossRef]
- Jin, C.; Lian, J.; Gao, Y.; Guo, K.; Wu, K.; Gao, L.; Zhang, X.; Zhang, X.; Liu, Q. Si Doped CoO Nanorods as Peroxidase Mimics for Colorimetric Sensing of Reduced Glutathione. ACS Sustain. Chem. Eng. 2019, 7, 13989–13998. [Google Scholar] [CrossRef]
- Bian, B.; Zhu, X.; Wu, Q.; Liu, Y.; Liu, S.; Liu, Q.; Yu, S. Pt and ZnFe2O4 Nanoparticles Immobilized on Carbon for the Detection of Glutathione. ACS Appl. Nano Mater. 2021, 4, 9479–9488. [Google Scholar] [CrossRef]
- Zheng, A.-X.; Cong, Z.-X.; Wang, J.-R.; Li, J.; Yang, H.-H.; Chen, G.-N. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens. Bioelectron. 2013, 49, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xu, G.; Niu, Y.; Ding, X.; Han, Y.; Kong, W.; Fang, Y.; Niu, H.; Xu, Y. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 2020, 8, 3513–3518. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.E.; Zhang, P.; Azizuddin, K.; Santos, G.B.D.; Oleinick, N.L. Structural Factors and Mechanisms Underlying the Improved Photodynamic Cell Killing with Silicon Phthalocyanine Photosensitizers Directed to Lysosomes Versus Mitochondria. Photochem. Photobiol. 2010, 85, 1189–1200. [Google Scholar] [CrossRef]
- Shu, Q.; Liu, J.; Chang, Q.; Liu, C.; Wang, H.; Xie, Y.; Deng, X. Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopa mine Nanoparticles. ACS Biomater. Sci. Eng. 2021, 7, 5497–5505. [Google Scholar] [CrossRef]
Catalytic Material | Km (mM) | Vm (10−8 M·s−1) | Reference | ||
---|---|---|---|---|---|
TMB | H2O2 | TMB | H2O2 | ||
HPR | 0.434 | 3.7 | 10 | 8.71 | [37] |
K,Cl-L-CDs | 0.85 | 0.19 | 11.63 | 251 | [23] |
MXene@NiFe-LDH | 0.187 | 0.078 | 1.707 | 2.076 | [38] |
GOx@ZIF-8@Fe-PDA | 0.21 | 0.09 | 0.74 | 0.30 | [39] |
N/S-CDs | 0.0765 | 0.0488 | 0.3096 | 0.6799 | [40] |
MXene@PDA/Co-N-CDs | 0.017 | 0.6949 | 0.0486 | 0.3437 | This work |
Probe | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
NS-CQDs | 1–55 μM | 4.0 μM | [41] |
CDs@ZIF-8 | 0–100 μM | 1.04 μM | [42] |
Co-POP | 5–300 μM | 0.71 μM | [43] |
MXene@PDA/Co-N-CDs | 0.3–20 μM | 0.12 μM | this work |
Si-CoO | 1–100 μM | 0.45 μM | [44] |
Pt/ZnFe2O4/C nanoperoxidase | 1–30 μM | 0.38 μM | [45] |
Graphene Dots | 0.5–100 μM | 0.5 μM | [46] |
TiO2/C-QDs | 0–25 μM | 0.2 μM | [47] |
Urine | Addition (µM) | Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Urine 1 | 0 | 0.05 | - | 4.6 |
2.5 | 2.45 | 98 | 5.1 | |
3 | 3.03 | 101 | 3.2 | |
4 | 4.04 | 101 | 2.6 | |
Urine 2 | 0 | 0.02 | - | 4.7 |
2.5 | 2.41 | 96 | 3.6 | |
3 | 3.13 | 110 | 4.4 | |
4 | 4.03 | 101 | 4.5 | |
Urine 3 | 0 | 0.08 | - | 3.8 |
2.5 | 2.51 | 101 | 4.6 | |
3 | 3.14 | 105 | 5.1 | |
4 | 3.86 | 97 | 3.2 |
Serum | Found (µM) | Addition (µM) | Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Serum 1 | 0.178 | 5 | 5.36 | 104 | 1.48 |
10 | 9.91 | 97 | 4.34 | ||
20 | 19.84 | 98 | 2.64 | ||
Serum 2 | 0.179 | 5 | 5.26 | 102 | 0.44 |
10 | 10.54 | 104 | 0.92 | ||
20 | 20.74 | 103 | 2.07 | ||
Serum 3 | 0.25 | 5 | 5.68 | 109 | 0.86 |
10 | 10.56 | 103 | 0.92 | ||
20 | 20.73 | 102 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Jia, J.; Wang, Z.; Wang, W. MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy. Nanomaterials 2024, 14, 1090. https://doi.org/10.3390/nano14131090
Lu X, Jia J, Wang Z, Wang W. MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy. Nanomaterials. 2024; 14(13):1090. https://doi.org/10.3390/nano14131090
Chicago/Turabian StyleLu, Xiaofei, Jingjing Jia, Zonghua Wang, and Wenjing Wang. 2024. "MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy" Nanomaterials 14, no. 13: 1090. https://doi.org/10.3390/nano14131090
APA StyleLu, X., Jia, J., Wang, Z., & Wang, W. (2024). MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy. Nanomaterials, 14(13), 1090. https://doi.org/10.3390/nano14131090