One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Carbon Aerogels
2.3. Characterization
2.4. Adsorption of Carbon Aerogel
2.5. Photocatalytic Degradation
2.6. Radical Inhibitors Experiment
3. Results and Discussion
3.1. Morphology
3.2. Structure and Composition State
3.3. Photodegradation of Rh. B
3.4. Mechanism of Photocatalytic Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Imam, S.S.; Babamale, H.F. A short review on the removal of rhodamine B dye using agricultural waste-based adsorbents. Asian J. Chem. Sci. 2020, 7, 25–37. [Google Scholar] [CrossRef]
- Carneiro, J.O.; Samantilleke, A.P.; Parpot, P.; Fernandes, F.; Pastor, M.; Correia, A.; Luís, E.A.; Chivanga Barros, A.A.; Teixeira, V. Visible Light Induced Enhanced Photocatalytic Degradation of Industrial Effluents (Rhodamine B) in Aqueous Media Using TiO2 Nanoparticles. J. Nanomater. 2016, 2016, 4396175. [Google Scholar] [CrossRef]
- Saigl, Z.M. Various Adsorbents for Removal of Rhodamine B Dye: A Review. Indones. J. Chem. 2021, 21, 1039–1056. [Google Scholar] [CrossRef]
- Paździor, K.; Bilińska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2019, 376, 120597. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Rita Kant, R.K. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 4, 22–26. [Google Scholar]
- Hunge, Y.M.; Yadav, A.A.; Mahadik, M.A.; Bulakhe, R.N.; Shim, J.J.; Mathe, V.L.; Bhosale, C.H. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt. Mater. 2018, 76, 260–270. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Azhar, Q.M.; Senthil Kumar, P.; Yusuf, A.A.; Al-Buriahi, A.K.; Radin Mohamed, R.M.S.; Al-shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian J. 2020, 15, 3239–3253. [Google Scholar] [CrossRef]
- He, S.; Chen, Y.; Li, X.; Zeng, L.; Zhu, M. Heterogeneous Photocatalytic Activation of Persulfate for the Removal of Organic Contaminants in Water: A Critical Review. ACS ES&T Eng. 2022, 2, 527–546. [Google Scholar] [CrossRef]
- Javanbakht, V.; Mohammadian, M. Photo-assisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. J. Mol. Struct. 2021, 1239, 130496. [Google Scholar] [CrossRef]
- Wu, Z.G.; Wang, L.; Wang, Y.L.; Zhang, A.W. A novel hydrothermal method to synthesize brookite titanium dioxide nanosquares for efficient pollutant degradation. Environ. Chem. Lett. 2023, 21, 3071–3076. [Google Scholar] [CrossRef]
- Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.; Yu, J.; Chen, X. A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron–Hole Separation for High-Performance Hydrogen Evolution. Adv. Mater. 2019, 31, 1806596. [Google Scholar] [CrossRef]
- Zheng, J.-R.; Yuan, C.-S. Comparing the Photocatalytic Oxidation Efficiencies of Elemental Mercury Using Metal-Oxide-Modified Titanium Dioxide under the Irradiation of Ultra-Violet Light. Catalysts 2024, 14, 209. [Google Scholar] [CrossRef]
- Matias, M.L.; Reis-Machado, A.S.; Rodrigues, J.; Calmeiro, T.; Deuermeier, J.; Pimentel, A.; Fortunato, E.; Martins, R.; Nunes, D. Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts. Nanomaterials 2023, 13, 1090. [Google Scholar] [CrossRef]
- Murcia, J.J.; Ávila-Martínez, E.G.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O.H. Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials 2019, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Chen, Z.; Qi, H. A novel cellulose-derived carbon aerogel@Na2Ti3O7 composite for efficient photocatalytic degradation of methylene blue. J. Appl. Polym. Sci. 2021, 138, 51347. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68. [Google Scholar] [CrossRef]
- Díez, A.M.; Pazos, M.; Sanromán, M.Á.; Kolen’ko, Y.V. GO-TiO2 as a Highly Performant Photocatalyst Maximized by Proper Parameters Selection. Int. J. Environ. Res. Public Health 2022, 19, 11874. [Google Scholar] [CrossRef]
- Garg, A.; Chauhan, A.; Agnihotri, C.; Singh, B.P.; Mondem, V.; Basu, S.; Agnihotri, S. Sunlight active cellulose/g-C3N4/TiO2 nano-photocatalyst for simultaneous degradation of methylene blue dye and atenolol drug in real wastewater. Nanotechnology 2023, 34, 505705. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Zhong, L.; Dong, Z.; Chen, C.; Xu, Z. Reusable and environmentally friendly cellulose nanofiber/titanium dioxide/chitosan aerogel photocatalyst for efficient degradation of tetracycline. Appl. Surf. Sci. 2023, 641, 158425. [Google Scholar] [CrossRef]
- Liu, S.; Su, Z.L.; Liu, Y.; Yi, L.Y.; Chen, Z.L.; Liu, Z.Z. Mechanism and Purification Effect of Photocatalytic Wastewater Treatment Using Graphene Oxide-Doped Titanium Dioxide Composite Nanomaterials. Water 2021, 13, 1915. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Song, J.; Yang, J.; Niu, Y.; Zhao, D. Catalytic degradation of rhodamine B by titanium dioxide doped polydopamine photoresponsive composites. Int. J. Biol. Macromol. 2024, 259, 129405. [Google Scholar] [CrossRef]
- Phu, N.D.; Hoang, L.H.; Van Hai, P.; Huy, T.Q.; Chen, X.-B.; Chou, W.C. Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification. J. Alloys Compd. 2020, 824, 153914. [Google Scholar] [CrossRef]
- Wang, W.; Qiang, W.; Chen, C.; Sun, D. NH2-MIL-125-Derived N-Doped TiO2@C Visible Light Catalyst for Wastewater Treatment. Polymers 2024, 16, 186. [Google Scholar] [CrossRef] [PubMed]
- Clastin Indira, A.; Muthaian, J.R.; Pandi, M.; Mohammad, F.; Al-Lohedan, H.A.; Soleiman, A.A. Photocatalytic Efficacy and Degradation Kinetics of Chitosan-Loaded Ce-TiO2 Nanocomposite towards for Rhodamine B Dye. Catalysts 2023, 13, 1506. [Google Scholar] [CrossRef]
- Kaneva, N.; Bojinova, A.; Papazova, K. Enhanced Removal of Organic Dyes Using Co-Catalytic Ag-Modified ZnO and TiO2 Sol-Gel Photocatalysts. Catalysts 2023, 13, 245. [Google Scholar] [CrossRef]
- Azami, M.S.; Ismail, K.; Ishak, M.A.M.; Zuliahani, A.; Hamzah, S.R.; Nawawi, W.I. Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye. J. Water Process Eng. 2020, 35, 101209. [Google Scholar] [CrossRef]
- Taghdiri, M.; Doolabi, S.D. Shift the Photocatalytic Activity of P25 TiO2 Nanoparticles toward the Visible Region upon Surface Modification with Organic Hybrid of Phosphotungstate. Int. J. Photoenergy 2020, 2020, 8870194. [Google Scholar] [CrossRef]
- Spilarewicz-Stanek, K.; Jakimińska, A.; Kisielewska, A.; Batory, D.; Piwoński, I. Understanding the Role of Silver Nanostructures and Graphene Oxide Applied as Surface Modification of TiO2 in Photocatalytic Transformations of Rhodamine B under UV and Vis Irradiation. Materials 2020, 13, 4653. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Gilani, S.J.; Shah, A.A.; Channa, I.A.; Almani, K.F.; Chandio, A.D.; Halepoto, I.A.; Tahira, A.; Bin Jumah, M.N.; Ibupoto, Z.H. Effective Removal of Methylene Blue by Surface Alteration of TiO2 with Ficus Carica Leaf Extract under Visible Light. Nanomaterials 2022, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, P.; Cheng, Y.; Gao, Y.; Chen, F.; Liu, Z.; Dai, Y. Study on enhanced photocatalytic performance of cerium doped TiO2-based nanosheets. Chem. Eng. J. 2013, 219, 478–485. [Google Scholar] [CrossRef]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- Ratshiedana, R.; Kuvarega, A.T.; Mishra, A.K. Titanium dioxide and graphitic carbon nitride–based nanocomposites and nanofibres for the degradation of organic pollutants in water: A review. Environ. Sci. Pollut. Res. 2021, 28, 10357–10374. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Huang, W.; Zhang, L.; He, M.; Xu, S.; Sun, D.; Jiang, X. Moderate Bacterial Etching Allows Scalable and Clean Delamination of g-C3N4 with Enriched Unpaired Electrons for Highly Improved Photocatalytic Water Disinfection. ACS Appl. Mater. Interfaces 2018, 10, 13796–13804. [Google Scholar] [CrossRef] [PubMed]
- Razali, M.H.; Md Fauzi, M.A.F.; Mohd Azam, B.; Yusoff, M. g-C3N4/TiO2 nanocomposite photocatalyst for methylene blue photodegradation under visible light. Appl. Nanosci. 2022, 12, 3197–3206. [Google Scholar] [CrossRef]
- Gallegos-Cerda, S.D.; Hernández-Varela, J.D.; Pérez, J.J.C.; Huerta-Aguilar, C.A.; Victoriano, L.G.; Arredondo-Tamayo, B.; Hernández, O.R. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes. Carbohydr. Polym. 2024, 324, 121476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yuan, W.; Xia, T.; Ao, C.; Zhao, J.; Huang, B.; Wang, Q.; Zhang, W.; Lu, C. A TiO2 Coated Carbon Aerogel Derived from Bamboo Pulp Fibers for Enhanced Visible Light Photo-Catalytic Degradation of Methylene Blue. Nanomaterials 2021, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.-X.; Chen, S.-P.; Li, D.-L.; Wang, M.-L.; Zhu, J.-L.; Zhong, G.-J.; Huang, H.-D.; Li, Z.-M. Hierarchically porous cellulose-based carbon aerogels with N-doped skeletons and encapsulated iron-based catalysts for efficient tetracycline catalytic degradation. Int. J. Biol. Macromol. 2024, 261, 129829. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S.; Li, J.; Xie, F.; Yang, H.; Wang, C.; Fahlman, B.D.; Li, W. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation. J. Hazard. Mater. 2023, 454, 131397. [Google Scholar] [CrossRef]
- Jiao, Y.; Ding, J.; Mei, C.; Xiao, H.; Li, J. Advances in preparation and properties of biomass-based carbon aerogel photocatalysts. Clean Coal Technol. 2023, 29, 19–33. [Google Scholar]
- Yang, L.; Chen, C.; Hu, Y.; Wei, F.; Cui, J.; Zhao, Y.; Xu, X.; Chen, X.; Sun, D. Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J. Colloid Interface Sci. 2020, 562, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, D.D.; Huang, J.; Huang, Z.X.; Zhang, Y.; Li, L.L. Multicomponent Composite Membrane with Three-Phase Interface Heterostructure as Photocatalyst for Organic Dye Removal. ACS Omega 2022, 7, 17128–17143. [Google Scholar] [CrossRef]
- Fauziyah, M.a.; Widiyastuti, W.; Setyawan, H. Nitrogen-Doped Carbon Aerogels Prepared by Direct Pyrolysis of Cellulose Aerogels Derived from Coir Fibers Using an Ammonia–Urea System and Their Electrocatalytic Performance toward the Oxygen Reduction Reaction. Ind. Eng. Chem. Res. 2020, 59, 21371–21382. [Google Scholar] [CrossRef]
- Zong, Z.; Ren, P.; Guo, Z.; Wang, J.; Chen, Z.; Jin, Y.; Ren, F. Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 2022, 619, 96–105. [Google Scholar] [CrossRef]
- Ganguly, A.; Nag, S.; Gayen, K. Synthesis of cellulosic and nano-cellulosic aerogel from lignocellulosic materials for diverse sustainable applications: A review. Prep. Biochem. Biotechnol. 2024, 54, 419–434. [Google Scholar] [CrossRef]
- Nguyen, T.V.T.; Nguyen, N.T.; Nguyen, V.V.; Nguyen, T.; Ngo, H.L.; Huynh, L.T.N.; Le, H.C.; Tran, T.N.; Ho, T.T.N.; Nguyen, T.T.; et al. Effect of Urea Content on MCDI Performance of Waste-Corn-Stalk-Derived Cellulose Carbon Aerogel. Fibers Polym. 2023, 24, 1929–1939. [Google Scholar] [CrossRef]
- Wang, Z.; Xin, X.; Xu, Y.; Liu, Q.; Zhu, Y.; Song, X.; Liu, Z.; Xu, J.; Liu, J.; Gao, L. High-performance Cu2O-based photocatalysts enabled by self-curling nanocelluloses via a freeze-drying route. J. Am. Ceram. Soc. 2023, 106, 7680–7690. [Google Scholar] [CrossRef]
- Sun, W.; Thummavichai, K.; Chen, D.; Lei, Y.; Pan, H.; Song, T.; Wang, N.; Zhu, Y. Co-Zeolitic Imidazolate Framework@Cellulose Aerogels from Sugarcane Bagasse for Activating Peroxymonosulfate to Degrade P-Nitrophenol. Polymers 2021, 13, 739. [Google Scholar] [CrossRef]
- Görlich, P.; Karras, H.; Kötitz, G.; Lehmann, R. Spectroscopic Properties of Activated Laser Crystals (I). Phys. Status Solidi B 1964, 5, 437–461. [Google Scholar] [CrossRef]
- Prabakaran, S.; Nisha, K.D.; Harish, S.; Archana, J.; Navaneethan, M. Improved charge transfer dynamics of Antimony doped TiO2/rGO nanocomposites. Mater. Lett. 2021, 302, 130294. [Google Scholar] [CrossRef]
- Zhu, J.-L.; Wang, M.-L.; Shi, S.-C.; Ren, J.-X.; Huang, H.-D.; Lin, W.; Li, Z.-M. In-situ constructing robust cellulose nanocomposite hydrogel network with well-dispersed dual catalysts for the efficient, stable and recyclable photo-Fenton degradation. Cellulose 2022, 29, 1929–1942. [Google Scholar] [CrossRef]
- Camparotto, N.G.; Neves, T.d.F.; Mastelaro, V.R.; Prediger, P. Hydrophobization of aerogels based on chitosan, nanocellulose and tannic acid: Improvements on the aerogel features and the adsorption of contaminants in water. Environ. Res. 2023, 220, 115197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-L.; Chen, S.-P.; Lin, W.; Huang, H.-D.; Li, Z.-M. Cellulose mineralization with in-situ synthesized amorphous titanium dioxide for enhanced adsorption and auto-accelerating photocatalysis on water pollutant. Chem. Eng. J. 2023, 456, 141036. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, T. Highly Selective Electrochemical CO2 Reduction to C2 Products on a g-C3N4-Supported Copper-Based Catalyst. Int. J. Mol. Sci. 2022, 23, 14381. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-L.; Zhang, S.; Zhou, Z.-H.; Zhu, J.-L.; Gao, J.-F.; Dai, K.; Huang, H.-D.; Li, Z.-M. Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos. Part. B Eng. 2021, 224, 109175. [Google Scholar] [CrossRef]
- Wang, M.-L.; Zhou, Z.-H.; Zhu, J.-L.; Lin, H.; Dai, K.; Huang, H.-D.; Li, Z.-M. Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based carbon aerogel. Carbon. 2022, 198, 142–150. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, X.; Li, A.; Ji, B. Selective Adsorption of Gadolinium by Nitrogen-Doped Carboxymethylated Cellulose Nanocrystalline Carbon Aerogels Functionalized in the Ammonia–Urea System. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Duy, P.H.A.; Tu, P.M.; Son, T.T.; Dat, N.M.; Nam, N.T.H.; Cong, C.Q.; Hai, N.D.; An, H.; Huyen, N.T.T.; Minh, P.P.D.; et al. A facile fabrication of zinc oxide-doped carbon aerogel by cellulose extracted from coconut peat and sodium alginate for energy storage application. J. Appl. Polym. Sci. 2023, 140, 53837. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.; Wang, L.; Liu, Y.; He, D.; Wang, M.; Wang, J. Intra-Molecular Electrical Field Regulated Nonlinear Catalyst Charge Transfer in the Organic Conjugated Molecular System. Catalysts 2021, 11, 1375. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, C.; Zhao, J. Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+ and/or Pt(IV) under Visible Light Irradiation: N-Deethylation, Chromophore Cleavage, and Mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef] [PubMed]
- You, R.; Chen, J.; Hong, M.; Li, J.; Hong, X. Facile Synthesis of g-C3N4/TiO2/Hectorite Z-Scheme Composite and Its Visible Photocatalytic Degradation of Rhodamine B. Materials 2020, 13, 5304. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Tang, J.; He, G.; Pan, S. Investigation of the Photocatalytic Performance, Mechanism, and Degradation Pathways of Rhodamine B with Bi2O3 Microrods under Visible-Light Irradiation. Materials 2024, 17, 957. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Ullah, M.; Rehman, S.U.; Shah, A.; Farooq, M.; Saeed, T.; Ullah, I.; Li, H. In-Depth Photocatalytic Degradation Mechanism of the Extensively Used Dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via Covalent Organic Framework-Based Photocatalysts. Water 2024, 16, 1588. [Google Scholar] [CrossRef]
- He, B.; Feng, M.; Chen, X.; Zhao, D.; Sun, J. One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis. Appl. Surf. Sci. 2020, 527, 146737. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Fan, M.; Liu, X.; Chen, J. One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B. Nanomaterials 2024, 14, 1141. https://doi.org/10.3390/nano14131141
Liu F, Fan M, Liu X, Chen J. One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B. Nanomaterials. 2024; 14(13):1141. https://doi.org/10.3390/nano14131141
Chicago/Turabian StyleLiu, Fangqin, Mingjie Fan, Xia Liu, and Jinyang Chen. 2024. "One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B" Nanomaterials 14, no. 13: 1141. https://doi.org/10.3390/nano14131141
APA StyleLiu, F., Fan, M., Liu, X., & Chen, J. (2024). One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B. Nanomaterials, 14(13), 1141. https://doi.org/10.3390/nano14131141